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Abstract

Learning in non-stationary environments gains extensive attention since environ-
ments are not always fixed in reality. The tasks are more challenging due to
the lack of information about the future evolution of environments. A plenty of
problems concern how to make decisions with these challenging non-stationary
environments. This thesis contributes to the theory of online decision making
problems in non-stationary Markovian environments. Two different algorithms
are proposed, which are aimed at solving online Markov decision process (MDP)
problems with a large or continuous state space.

Firstly, we settle online MDP problems with continuous state and action spaces
and propose the online policy gradient (OPG) algorithm. Although previously
proposed online MDP algorithms have achieved some exciting results, these algo-
rithms are not extensible to the continuous setting without additional assumptions.
The proposed OPG algorithm solves the continuous problems with a parameter-
ized policy model. This is the first work to give an online MDP algorithm that
can handle continuous state and action spaces with guarantee. Through theoret-
ical analyses, we show the proposed OPG algorithm is a no-regret algorithm in
different scenarios. Furthermore, we demonstrate the experimental behavior of
the OPG algorithm, which substantiates the theoretical results.

Secondly, we investigate the large (possibly infinite) state space problems and
propose online Markov decision processes with policy iteration (OMDP-PI) al-
gorithm. Compared with the state-of-the-art algorithms, the proposed algorithm
aims at large state space online MDP problems where less computational com-
plexity and the function approximation are necessary. To this end, the proposed
OMDP-PI algorithm is motivated by the idea of combining the function approx-
imation with policy iteration. We prove that our proposed OMDP-PI algorithm

v



achieves a sub-linear regret with respect to a policy set. A significant benefit of
the OMDP-PI algorithm is that a linear approximation could be used together with
the OMDP-PI algorithm for large (continuous) state space problems, where the
convergence is guaranteed. Through a grid world experiment, we illustrate the ex-
perimental performance of the OMDP-PI algorithm, which verifies the theoretical
regret analysis.

Given the solid theoretical results, we conclude that the proposed algorithms
could handle online MDP problems with large (continuous) state spaces.
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Chapter 1

Introduction

Online decision making is a sequential interaction between a decision maker and
a time varying environment. How can we learn the best strategy which gains
the maximum benefit or minimum cost in this unknown changing environment
without any priority knowledge? This thesis considers such problems with some
specific environments, which are mathematically formalized as the Markov de-
cision processes (MDPs). The difficulty of online decision making problems is
the uncertainty of the environments, which means that the decision maker lacks
of the future information about these changing environments. In this chapter, we
introduce the motivation and definition of the problems involved in this thesis.
A general description of online decision making is provided in Section 1.1. Then
two mathematical frameworks for modeling decision making and the objective are
presented in Section 1.2, Section 1.3, and Section 1.4, respectively. In Section 1.5
and Section 1.6, we introduce the contributions and the outline of this thesis.

1.1 Online Decision Making

Decision making routinely involves choice among temporally extended courses
of action over a broad range of time scales (Sutton et al., 1999). Human make
decisions for solving problems with solutions deemed to be satisfactory. Sev-
eral perspectives have been mainly studied with respect to the decision making
problems, such as psychological, cognitive, and normative. Besides knowing the
mechanism of human decision making, an important perspective is to investigate
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2 Chapter 1. Introduction

how to imitate the decision making process by computers. In order to make the
decision automatically, the computer needs to train a model which can make a
good decision by observations. Most machine learning algorithms (e.g., super-
vised learning, unsupervised learning) aim at training models by collecting train-
ing data from environments. However, a significant advantage of human decision
making is the capability of adaptation to the environmental changes including un-
seen situations (Kelemen et al., 2002). Therefore, the computer may learn to make
better (human-like) decisions, which is adaptable to the changing environment.
For this purpose, an online version of decision making is concerned to handle
the decision making problem with non-stationary environments. Online decision
making is a sequential decision making problem without the knowledge of the
evolution of the future (Kalai and Vempala, 2005; Kleinberg, 2005). Over some
time period, an online decision making problem involves an agent which could be
either a human or a computer. The agent chooses one element from a set of alter-
natives in a changing environment. By the changing environment, we mean the
environment decides the gain and consequence of the chosen decision. The main
difficulty of the online decision making problem is to face the uncertainty, which
has been well-studied in several topics by using the exploration and exploitation
techniques. Kleinberg (2005) defined the online decision making problem with a
quadruple {X , C,Ξ,F}, where

• (X , C) is the online decision domain, where X is the set of strategies and
C : X → R is a class of cost functions.

• The feedback model is specified by a set Ξ and a function F : X × C → Ξ.
Ξ is the set of the feedback values, and F(x, c) is the feedback the player
achieved when playing strategy x against cost function c.

In machine learning, most online decision problems concern the decision do-
main (X , [0, 1]X ), where C = [0, 1]X is the set of all mappings from X to [0, 1].
A typical problem is called the multi-armed bandit problem, which is motivated
by a gambler. Suppose there is a row of slot machines, where each of them is
assigned with a random reward distribution. The player needs to choose one of
the machines at each time step, which maximizes the total outcomes. Another
well-studied problem is called best-expert problem, whose goal is to predict the
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best decision by choosing the best expert’s prediction within a set of experts.

By the type of the non-stationary environments, we could consider two types
of uncertainties: the uncertainty of the environment dynamics and the uncertainty
of the outcomes. In this thesis, we mainly focus on facing the uncertainty of the
outcomes. And the environment dynamics are assumed to be fixed and Marko-
vian. According to the uncertainty of the outcomes, the online decision making
problem can be divided into three types: stochastic, adversarial, and pre-fixed.
In the stochastic online decision making problem, the outcomes are assumed to
be determined by a latent variable which is drawn independently from an iden-
tical distribution. In the adversary scenario, we do not make any assumption on
the evolution of the changing environment. The pre-fixed online decision making
problem is in the middle of these two problems, where the outcomes are assume
to be affected only by the current status and the changes could be either stochastic
or adversarial. In this thesis, we mainly focus on the last scenario which usually
can be formulated as Markov decision processes (MDPs).

1.2 Markov Decision Processes

The research of MDPs was known at least as early as the 1950s (Bellman, 1957).
A central relevance resulted from the introduction of the dynamic programming
concept by Bellman (1957). MDPs offer an exquisite mathematical model for
dealing with sequential decision problems in which outcomes are partially con-
trolled by a decision maker. MDPs are shown to be useful for solving a wide range
of optimization problems that arise in the fields of operations research, automatic
control, artificial intelligence, management science, finance, computer science,
and others (Yu, 2006). Thanks to MDPs, researchers are capable of analyzing
the dynamics of a stochastic process whose transition mechanism is controlled
over time. Especially, automatic control and artificial intelligence are the most
important fields where MDPs are widely used for solving problems. In automatic
control, MDPs are used to solve nonlinear stochastic optimal control problems and
adaptive optimal control problems (Busoniu et al., 2010). In artificial intelligence,
MDPs are used to help the artificial agent learn how to behave in an unknown en-
vironment without requiring prior knowledge (Sutton and Barto, 1998).
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The goal of the MDP algorithms is to choose decisions which perform best
over an extended period of time. To reach the goal, there are two types of learning
methods (Busoniu et al., 2010):

• Dynamic programming (DP): It is an algorithmic method for solving MDP
problems, which requires a model of the environment. The DP algorithms
work offline, learning the best strategy of making decisions which is then
used to control the process. Usually, there is no need to obtain the analytic
solution for the problem. DP is used for such a generative model which is
easier than deriving an analytic expression of the environment directly.

• Reinforcement learning (RL): Different from DP, the RL algorithms are used
when the environment is too complex to construct a model for it. RL can
be seen as model-free, sample-based DP, and DP can be seen as model-
base RL. Since constructing a model is expensive or difficult in some cases,
RL algorithms learn the environment with the limited data which can be
obtained by simulations.

Both DP and RL aim to choose the optimal strategy that maximizes the cumu-
lative rewards over a long period of time for MDP problems. More precisely, an
MDP consists three signals: a state, an action, and a reward. The state describes
the state of the decision maker at each time step. The action describes the cho-
sen decision which affects the environment. The reward is an evaluation signal of
the chosen action which is provided by the environment. The goal is to learn the
optimal policy, which leads the optimal actions for every state. An illustration of
the MDP framework is shown in Figure 1.1. In a more formal way, an MDP is
specified by four components {S,A, p, r}, where

• S is the state space, which contains all states s. S could be either discrete
or continuous.

• A is the action space, which contains all possible actions a. A could be
either discrete or continuous.

• p could be either the transition probability or transition probability density,
while the state space and action space are discrete or continuous. p(s′|s,a)
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yields the conditional probability of next state s′ given current state s and
action a to be taken.

• r(s,a) is the reward function of the state s and the action a.

An MDP algorithm can produce two kinds of policies: deterministic poli-
cies π(s), which always choose the same action a = π(s) for a given state s,
and stochastic policies π(a|s), which is the conditional probability (density) of
action a to be taken given state s. At each time step t, the decision maker ob-
serves its current state st and chooses an action according to π(st) or π(at|st).
Then the decision maker transits to the next state st+1 following the transition
p(st+1|st,at). At the same time, a reward r(st,at) is assigned and revealed to the
decision maker. The number of the time steps could be infinite or finite in reality,
which are called infinite horizon MDPs and finite horizon MDPs, respectively.
Moreover, there are two kinds of evaluation functions (i.e., the return) for infinite
and finite horizon MDPs as follows.

For the finite horizon MDP, the return is the sum of rewards over the entire
time horizon:

Rπ(T ) = Eπ

[
T∑
t=1

r(st,at)

]
, (1.1)

where Eπ[·] denotes the expectation taken over the trajectory {s1,a1, . . . , sT ,aT}
generated by the policy π, T is the length of the time horizon. It is clear the above
definition of the return is meaningless for infinite time horizon MDPs, since the
sum of rewards becomes unbounded in this case. Therefore, the discounted return
is defined instead which is bounded by ‖r(·,·)‖∞

1−α :

Rα(π) = Eπ

[
∞∑
t=1

αt−1r(st,at)

]
,

where α ∈ [0, 1) is the discount factor. Similarly, the average return is defined as

ρr(π) = lim
T→∞

Eπ

[
1

T

T∑
t=1

r(st,at)

]
.

Considering the state structure of MDPs, the returns defined in above equa-
tions are not enough to evaluate the performance of a policy in a given state s.
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Figure 1.1: The illustration of the interaction between the decision maker and the
environment in MDPs.
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Another category of evaluations is essential, which takes the state and action struc-
tures into account. For finite horizon MDPs, we could define the value function
Vπr (s, T ) and the state-action value function Qπ

r (s,a, T ), which are efficient tools
for learning the policy. The value function Vπr (s, T ) is used to indicate the perfor-
mance of policy π starting from a given state s, which is defined as

Vπr (s, T ) = Eπ

[
T∑
t=1

r(st,at)|s1 = s

]
.

Similarly, the state-action value function Qπ
r (s,a, T ) is defined for evaluating

policy π starting form a pair of given state s and action a which is defined as

Qπ
r (s,a, T ) = Eπ

[
T∑
t=1

r(st,at)|s1 = s,a1 = a

]
.

To the purpose of boundness, the discount factor and the average criteria are used
for infinite horizon MDPs. The value function Vπr (s) and the discounted value
function Vπr (s, α) are defined as

Vπr (s) = Eπ

[
T∑
t=1

(r(st,at)− ρr(π)) |s1 = s

]
,

Vπr (s, α) = Eπ

[
T∑
t=1

αt−1r(st,at)|s1 = s

]
.

The state-action value function Qπ
r (s,a) and the discounted state-action value

function Qπ
r (s,a, α) for infinite horizon MDPs are defined as

Qπ
r (s,a) = Eπ

[
T∑
t=1

(r(st,at)− ρr(π)) |s1 = s,a1 = a

]
,

Qπ
r (s,a, α) = Eπ

[
T∑
t=1

αt−1r(st,at)|s1 = s,a1 = a

]
.

The famous Bellman equation (Bellman, 1957) shows the relationship of the
above evaluation criteria:

Vπr (s, T ) =Ea∼π[Qπ
r (s,a, T )]

=Ea∼π

[
r(s,a) +

∑
s′∈S

p(s′|s,a)Vπr (s′, T )

]
,
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where Ea∼π[·] denotes the expectation taken over the action space. Similarly, the
Bellman equation for infinite horizon MDPs indicates:

Vπr (s) =Ea∼π[Qπ
r (s,a)]

=Ea∼π

[
r(s,a)− ρr(π) +

∑
s′∈S

p(s′|s,a)Vπr (s′)

]
,

and

Vπr (s, α) =Ea∼π[Qπ
r (s,a, α)]

=Ea∼π

[
r(s,a) + α

∑
s′∈S

p(s′|s,a)Vπr (s′, α)

]
.

Several kind of efficient algorithms are proposed for optimizing the above criteria
using the Bellman equation, i.e., the policy iteration, value iteration and policy
search algorithms:

• Value iteration algorithms learn the optimal policy by searching for the op-
timal value function. After enough number of iterations, the optimal value
function can be learned from the collected data, which yields the optimal
policy directly.

• Policy iteration algorithms evaluate policies by constructing their value func-
tions. At the same time, the policy is improved by the these value functions.
After enough number of iterations, the improved policies converge to the
optimal policy.

• Policy search algorithms directly solve the optimization problems which
maximize the above criterion, e.g., by gradient ascent.

In this thesis, we mainly focus on developing the last two kinds of algorithms
since a decision should be made at each time step in the online decision making
problems.

1.3 Online Markov Decision Processes

Learning in non-stationary environments gains extensive attention, since environ-
ments are not always fixed in reality. The tasks are more challenging due to the
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lack of information about the future evolution of environments. A plenty of prob-
lems concern how to make decisions with this challenging non-stationary envi-
ronment, e.g., the multi-armed bandit problem, the competition game problem,
and the online control problem. In this section, we consider MDPs with changing
environments called online MDPs which is a promising generalization of standard
MDPs. A typical framework of the online MDP is shown in Figure 1.2. The de-
cision maker sequentially chooses an action after observing its current state. The
environment shows the reward of the chosen action to the agent, which is assumed
to be partially affected by some unknown changing factors abruptly. Overall, an
online MDP problem is an extension of both online decision making and rein-
forcement learning (Yu et al., 2009):

• In an online decision making problem, the agent needs to make a decision at
each time step without the knowledge about the future environment (Kalai
and Vempala, 2005). A certain cost function will be observed only after the
decision is made at each time step, and the goal is to minimize the regret
against the best single decision. There is no assumption on the dynamics in
the online decision making problem, and thus the decision can switch from
one to another abruptly.

• In reinforcement learning, the dynamics are assumed to be Markovian. The
reward function and transition dynamics are fixed but unknown to the agent,
and thus the estimated reward function and transition function will converge
to the true ones if sufficient number of samples are observed. The goal is
to find the optimal policy which maximizes the cumulative reward without
full information about the environment.

In a more formal way, an online MDP is specified by {S,A, p, [rt]t=1,...,∞},
where

• S is the state space, which could be either discrete or continuous.

• A is the action space, which could be either discrete or continuous.

• p(s′|s,a) : S × S × A→ R is the transition probability (density).

• r1, r2, . . . is an infinite reward function sequence, only r1, . . . , rt−1 are ob-
served at time step t.
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Figure 1.2: The illustration of the interaction between the decision maker and the
environment in online MDPs.
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The objective of an online MDP algorithm is to produce a strategy of choosing
an action at each time step. Similarly to the MDP, the time-dependent policy πt
here could be either deterministic or stochastic. A time-dependent deterministic
policy always provides the same action a = πt(s) for a given state s at each time
step t. On the other hand, a time-dependent stochastic policy πt(a|s) yields the
conditional probability (density) of action a to be taken at state s at each time step
t. A formal definition of the return for an online MDP algorithm A over T time
steps is given as

RA(T ) = E{π1,...,πT }

[
T∑
t=1

rt(st,at)

]
,

where {π1, . . . , πT} is the policy sequence (i.e., the time-dependent policy) pro-
vided by A. The expectation E{π1,...,πT }[·] denotes the expectation taken over the
trajectory {s1,a1, . . . , sT ,aT} following the algorithm A. Similarly, we define
the return and the average return of a fixed policy π over T time steps as

Rπ(T ) = Eπ

[
T∑
t=1

rt(s,a)

]
. (1.2)

Note that the above definition is similar to the definition of the return of standard
MDPs in Eq.(1.1). We use the same notation since the only difference is the
reward function is changing. In the rest of this thesis, we consider the definition
in Eq.(1.2).

As we showed in Section 1.2, the MDP is a powerful framework to solve
stochastic optimization problems (Parr, 1998). Similarly, the online MDP could
be applied to many optimization problems from robotics to finance with non-
stationary environments. Several examples are provided as follows:

Tracking the moving target: Consider the problem of tracking a moving target
where the goal is to minimize the distances of an artificial agent and a target agent
over some period of time T . If the target agent moves arbitrarily (adversarially),
the artificial agent should adapt the moving strategy which could minimize the
distances. The distances are partially influenced by the target agent, and partially
influenced by the agent. As shown in Abbasi-Yadkori et al. (2013), the problem
could be solved by dynamic programming if the trajectory of the target is known
in advance. However, the trajectory is usually unknown and the prior knowledge
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might not be trustable. In this scenario, let us assume the state st is the current
position of the agent which can be observed. At each time step t, the action at
is decided which is the moving distance and direction of the agent. The next
state st+1 is captured by the Markovian dynamic (i.e., transition). The distance
evaluation rt depends on the position of the moving target at each time step, which
is abruptly changing. The online MDP model is capable of solving this problem
and obtains an effective tracking strategy even if the trajectory is unknown.

Inventory control: Consider the problem of how to make an ordering list ac-
cording to the amount of items the store holds. Since the demand distribution of
the customers could change from time to time, the manager of the store should
change the ordering strategy correspondingly. However, the behaviors of the cus-
tomers are usually unpredictable which makes the problem harder to control. We
assume that the current number of the items in the storage is the state st. At each
time step t, the manager needs to decide how many items to order from the sup-
plier, which is the action at. The next state st+1 is decided by a linear function in
this case. The goal is to maximize the cumulative revenue (i.e., reward function),
which is partly decided by the demand distribution of the customers. Since the
reward function is changing, this problem can be formulated as an online MDP.

Recommender System: It concerns the problem of providing recommenda-
tions to the customers depending on the users’ profiles. The goal is to maximize
the users’ acceptance of the recommendations. Since there are a large number of
users available over some time period, the users’ profiles are usually switching
frequently. Let us assume that the state st is the current page that the user is view-
ing. According to a recommendation strategy, the recommender system offers a
page at according to the observations. The reward function rt is not only decided
by the offered page at each time step but also decided by the user. This problem
can be formulated as an online MDP problem with a layer-structured state space
(e.g., online episodic MDP) (Neu et al., 2010a; Zimin and Neu, 2013).

1.4 Regret

As mentioned beforehand, we show that the online decision making problem is
proposed for choosing the best decision sequence which maximize the outcomes
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over a period of time. Moreover, we would expect the cumulative outcomes of
our online decision making algorithm are independent of the length of the time
horizon. More realistically, there is no hope of comparing the performance of
an online decision making algorithm to the performance of the best strategy se-
quence. Therefore, we would like to introduce the notion of regret which is a
relative performance evaluation with respect to the best fixed strategy. The moti-
vation (Nisan et al., 2007) could be viewed as: Our algorithm adapts the strategy
based on the observations and receives the outcomes. We would like to avoid the
embarrassment that we could receive much more outcomes if we used a simple
fixed strategy all the time.

As mentioned in Section 1.2, the performance is evaluated by the return over
some time period. Ideally, the objective is to generate a optimal time-dependent
policy which maximizes the cumulative rewards over T time steps. Given the
fact online MDP problems are also online decision making problems, we would
like to define the regret against the best policy which is a relative performance
evaluation with respect to the best fixed policy. We treat the best fixed pol-
icy as a baseline since the best time-dependent policy is simply too strong as
a baseline. That is, the preferred baseline will be supπ∈Π Rπ(T ) rather than
sup{π1,...,πT }∈ΠT E{π1,...,πT }

[∑T
t=1 rt(st,at)

]
. A formal definition of the regret for

an online MDP algorithm A over T time steps can be written as

LA(T ) = sup
π∈Π

Rπ(T )−RA(T ). (1.3)

Therefore, we are interested in constructing algorithms that minimize the regret
instead of maximizing the return. Furthermore, an online MDP algorithm A has
no regret, if for any arbitrary reward function sequence, the regret (1.3) is o(T )

(i.e., sublinear regret),

1.5 Contributions

This thesis contributes to the theory of online decision making problems in non-
stationary Markovian environments. The state-of-the-art work (Even-Dar et al.,
2003, 2009; Yu et al., 2009; Dick et al., 2014) is not extensible to continuous
state space online MDP problems without additional assumptions and theorems
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since a strategy of choosing actions is learned for each state individually. Al-
though one typical way is to combine these algorithms with the discretization of
continuous state spaces, it also suffers from the curse of dimensionality (Bellman,
1957), which means that the time and space requirements to solve an MDP is
exponentially increased as the dimension increases. The online MDP problem
with a large discrete state space also suffers from the same issue as the continu-
ous problem. For this purpose, two algorithms are proposed, which are aimed at
solving online MDP problems with a large or continuous state space. The first
proposed algorithm settles the continuous problem by parameterizing the policy
space. Under a concavity assumption, the first proposed algorithm is proved to
perform asymptotically equal to the best fixed policy. Furthermore, the second
proposed algorithm parameterizes the value function which leads us to the pol-
icy directly. Without the concavity assumption, the second proposed algorithm is
computationally more efficient and extensible to continuous problems in exchange
for large regret. The illustration of the connection between existing work and the
proposed algorithms is shown in Figure 1.3. Through regret analysis, we illustrate
the proposed algorithms are no-regret algorithms with different regret bounds as
shown in Table 1.1.

• Chapter 3 considers online MDP problems with continuous state and action
spaces. A policy search type method is proposed and shown to achieve a
sublinear regret in this case.

• Chapter 4 introduces the proposed policy iteration type method for online
MDP problems with a large scale state space.

In this section, we briefly present the main results of the above researches.

Table 1.1: Regret bounds of proposed algorithms in this thesis.
Full Information Bandit Feedback

OPG
Concavity O(

√
T )

Concavity O(
√
T )

Strong Concavity O(log T )

OMDP-PI o(T ) Future Work
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Figure 1.3: Connection between existing work and the proposed algorithms.
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1.5.1 Continuous State and Action Spaces Online MDPs

As we have shown in Section 1.3, plenty of real online optimization problems can
be formulated as online MDPs, e.g. tracking the moving target, inventory control,
and recommender system. By the development of this model, the demand of solv-
ing large scale online MDP problems has been arisen in reality. Especially, the
online MDP problem with continuous state and action spaces is a challenging re-
search direction since we can not perform greedy methods searching for the best
policy. In recent years, some online MDP algorithms have been proposed with
two kinds of main ideas: expert algorithm based methods (Even-Dar et al., 2003,
2009; Yu et al., 2009) and online linear optimization based algorithms (Dick et al.,
2014). However, these algorithms are not extensible to the continuous setting
without additional assumptions and theorems since they learn the action distribu-
tion for each state individually. In Chapter 3, we settle this problem by a policy
search type method. The proposed online policy gradient (OPG) algorithm solves
the continuous problem with a parameterized policy model. To the best of our
knowledge, this is the first work to give an online MDP algorithm that can handle
continuous state and action spaces with guarantee. Regarding different scenarios,
we provide several main theorems as follows:

• Full information feedback with a concavity assumption: Suppose that at
each time step t, the entire reward function rt(s,a) is revealed to the al-
gorithm (full information feedback). We assume that ρrt ,∀t = 1, . . . T are
concave with respect to the policy parameter. In this scenario, the regret
against the best fixed policy of the OPG algorithm is O(

√
T ).

• Bandit feedback with a concavity assumption: Suppose that at each time
step t, only the reward value rt(st,at) is revealed to the algorithm (bandit
feedback). We assume that ρrt ,∀t = 1, . . . T are concave with respect to the
policy parameter. In this scenario, the regret against the best fixed policy of
the OPG algorithm is O(

√
T ).

• Full information feedback with a strong concavity assumption: We assume
that ρrt ,∀t = 1, . . . T are strong concave with respect to the policy param-
eter. In this scenario, the regret against the best fixed policy of the OPG
algorithm with full information feedback is O(log T ).
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Through theoretical results, we show the OPG algorithm is a no-regret algorithm
in different scenarios. Furthermore, we demonstrate the experimental behavior of
the OPG algorithm, which substantiates the theoretical results.

1.5.2 Large State Space Online MDPs

The online MDP problem could solve many real problems from robotics to fi-
nance with time-varying environments. It is natural to work on the large (possibly
infinite) state space problems, such that we consider to propose an algorithm with
less computation complexity in exchange for large regret.

The proposed algorithm OMDP-PI online Markov decision processes with
policy iteration (OMDP-PI) is motivated by the idea of combining the function
approximation with policy iteration. With full information of reward functions,
the proposed OMDP-PI algorithm is proved to achieve following results:

• The regret against the best policy of the OMDP-PI algorithm is sublinear.

• At each time step, the update rule of the proposed OMDP-PI algorithm
could be performed in O(|S|2.3728639 + |S|2|A|), which is more efficient
than existing methods.

• The linear approximation can be used together with the OMDP-PI algo-
rithm for large (infinite) state space problems, where the convergence is
guaranteed.

• The OMDP-PI algorithm could be extended to a more general algorithm
called the Online Markov Decision Processes with Stochastic Iteration (OMDP-
SI) algorithm. Under some additional assumptions, the OMDP-SI algorithm
achieves a sublinear regret as well.

Through a grid world experiment, we illustrate the experimental performance of
the OMDP-PI algorithm, which verifies the theoretical regret analysis.

1.6 Outline of This Thesis

This thesis consists of five chapters as shown in Figure 1.4. In this section, we
present the organization of this thesis.
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In Chapter 2, we analyze some related state-of-the-art algorithms for discrete
state and action spaces online MDP problems. Two types of fundamental tech-
niques: expert algorithms and online convex optimization are introduced and re-
viewed in Section 2.1.1 and Section 2.2.1, respectively. Then existing online MDP
algorithms with finite state and action spaces are analyzed, e.g., online MDPs
with experts in Section 2.1.2, online MDPs with online linear optimization in
Section 2.2.2.

In Chapter 3, we propose an online policy gradient algorithm for online MDP
problems with continuous state and action spaces. In Section 3.1, we show the mo-
tivation and the background knowledge of the continuous problem. In Section 3.2,
we present the proposed algorithm in detail. In Section 3.3 and Section 3.4, we
present the main theorems of the proposed algorithm with different feedback un-
der different assumptions. Section 3.3 describes the theoretical results of the OPG
algorithm with full feedback under concavity and strong concavity assumptions.
Section 3.4 describes the theoretical result with bandit feedback under a concavity
assumption. In Section 3.5, we demonstrate the experimental behavior of the pro-
posed algorithm with two toy experiments. Finally, the proofs of all the theoretical
results are presented in Section 3.6.

In Chapter 4, we propose an online MDPs with a policy iteration algorithm
for large state space online MDP problems. In Section 4.1, we present some
necessary preliminaries. Section 4.2 describes the proposed algorithm and the
main theorems in detail. An extension of the OMDP-PI algorithm with function
approximation for large state space problems is also provided in Section 4.2. In
Section 4.3, we further extend the proposed algorithm to a more general online
MDPs with stochastic iteration algorithm. Through a grid world experiment, we
illustrate the experimental performance of the OMDP-PI algorithm in Section 4.4.
In Section 4.5, we present a comparison of the proposed algorithm with previous
works. In Section 4.6, the proofs of all the theoretical results are presented.

In Chapter 5, we present the conclusions and future work.
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Chapter 2

Background Knowledge and Related
Work

In this chapter, we introduce the related work for discrete state space online MDP
problems. First of all, we introduce the online MDPs with experts algorithm in
Section 2.1. A fundamental online decision making problem called expert’s pre-
diction is presented in Section 2.1.1, which is the basic technique involved in the
online MDPs with experts algorithm. Then we present the main algorithm and the
theoretical results in Section 2.1.2 and Section 2.1.3. In Section 2.2, we introduce
the online MDPs with online linear optimization algorithm. The fundamental on-
line convex optimization problem is presented in Section 2.2.1. The theoretical
results are presented in Section 2.2.2.

2.1 Online MDPs with Experts

The online MDPs with Experts algorithm (Even-Dar et al., 2003, 2009) aims to
investigate how to incorporate the idea of experts to the MDP structure. A re-
view of the expert algorithms is presented in the beginning of this section. Then
we introduce two efficient ways to further extend expert algorithms for solving
online MDP problems. At last, we introduce the theoretical results for these two
approaches.

21
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2.1.1 Online Decision Making with Expert Algorithm

An extensively studied online decision making problem is the expert prediction,
whose goal is to predict the best decision by choosing the best expert’s prediction
(Littlestone and Warmuth, 1994; Vovk, 1990; Cesa-Bianchi and Lugosi, 2006).
More precisely, the decision maker chooses its own prediction yt from the experts’
prediction setD = {ye,t : e ∈ E} at each time step t, where E is the set of experts
indexed by e. The expert prediction follows the same protocol as the repeated
game:

• For each time step t = 1, 2, . . .

1. Observe current experts’ predictions ye,t,∀e ∈ E;

2. Choose the prediction yt ∈ D;

3. Observe the real outcome y∗t from the environment;

4. Update the strategy of choosing the expert by the loss l(yt, y∗t );

The objective of an expert prediction algorithm is to minimize the cumulative
regret, the difference of the cumulative losses with respect to each expert over T
time steps. The regret is defined as

LA(T ) = sup
e∈E

T∑
t=1

(l(yt, y
∗
t )− l(ye,t, y∗t )) .

By the randomness of the decision strategy, we divide the expert prediction
algorithms into deterministic and stochastic algorithms. Here, we introduce one
deterministic and two stochastic experts algorithms in this sections.

The weighted majority (WM) algorithm (Littlestone and Warmuth, 1994) makes
the decision by weighted voting, where the weights are determined by the mis-
takes each expert made. At each time step the weights of incorrect experts will be
reduced by the penalty factor β ∈ [0, 1) defined in advance. The WM algorithm
is summarized in Figure 2.1.

Now we move to the analysis of the WM algorithm. Any deterministic algo-
rithm (e.g., WM algorithm) cannot achieve a sub-linear regret in general, since
that the environment can always choose an adversarial feedback, which makes the
algorithm suffers 1 loss at each time step. However, the number of mistakes made
by the WM algorithm can be bounded by the following theorem.
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Theorem 2.1. Let MWM(T ) and M∗(T ) be the number of mistakes made by the
WM algorithm and the best expert e∗ ∈ E over T time steps. Then MWM(T ) can
be bounded as

MWM(T ) ≤ log |E|+M∗(T ) log 1/β

log 2/(1 + β)
,

where |E| denotes the cardinality of the expert set.

Proof. The proof we present follows Mohri et al. (2012). To obtain the result in
Theorem 2.1, we firstly introduce the potential function defined as

Wt =
∑
e∈E

we,t.

Then the update rule leads us to the following result:

Wt+1 ≤
1 + β

2
Wt, if yt 6= y∗t .

This result can be obtain by the fact that
∑

e:fe,t 6=y∗t
we,t ≥

∑
e:fe,t=y∗t

we,t when
yt 6= y∗t . Clearly, Wt is always non-negative for all t = 1, 2, . . . , T . Therefore we
have WT ≥ we∗,T = we∗,1β

M∗T , which yields the following inequalities:

βM
∗(T ) ≤ WT ≤ W1

(
1 + β

2

)MWM (T )

.

By taking the logarithm, we conclude the proof.

The mistake bound in Theorem 2.1 substantiates that the deterministic algo-
rithm cannot achieve a sublinear regret. A stochastic variant of the WM algo-
rithm is the the randomized weighted majority (RWM) algorithm (Littlestone and
Warmuth, 1994), which overcomes the linear regret issue of deterministic algo-
rithms. The basic idea is to predict yt by following the expert e with probability
we,t/

∑
e∈E we,t at time step t, as shown in Figure 2.2. The regret of the RWM

algorithm is bounded by the following theorem:

Theorem 2.2. Let LRWM(T ) and Le∗(T ) be the expected losses of the RWM algo-
rithm and the best expert e∗ ∈ E over T time steps. Then the regret LRWM(T ) =

LRWM(T )− Le∗(T ) satisfies

LRWM(T ) ≤ 2
√
T log |E|,

by setting β = max{1/2, 1−
√

log |E|
T
}.
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Initialize the weights for all e ∈ E with we,1 = 1.
for t = 1, . . . ,∞ do

Observe experts’ predictions ye,t,∀e ∈ E.
Choose the prediction by

yt =

{
1, if

∑
e∈E we,tye,t∑
e∈E we,t

≥ 1/2

0, otherwise

Observe y∗t .
if yt 6= y∗t then

Update we,t, ∀e ∈ E according to

we,t+1 =

{
βwe,t if ye,t 6= y∗t
we,t otherwise

end if
end for

Figure 2.1: Weighted majority algorithm
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Proof. The proof we present follows Mohri et al. (2012). Here we use the same
potential functions Wt =

∑
e∈E we,t,∀t = 1, . . . , T . We can derive the upper

bound for Wt+1 by the update rule as

Wt+1 =
∑

e:fe,t=y∗t

we,t + β
∑

e:fe,t 6=y∗t

we,t

=Wt + (β − 1)
∑

e:fe,t 6=y∗t

we,t

=Wt + (β − 1)WtlRWM(t)

=(1 + (β − 1)lRWM(t))Wt

=W1

t∏
i=1

(1 + (β − 1)lRWM(i)),

where lRWM(i) is the expected loss of the RWM algorithm at time step i. Com-
bining the upper bound with the lower bound for WT+1 as

βLe∗ (T ) = we∗,T+1 ≤ WT+1 = |E|
T∏
i=1

(1 + (β − 1)lRWM(i)).

By taking the logarithm, we can achieve the following bound:

Le∗(T ) log β ≤ log |E|+
T∑
i=1

log (1− (1− β)lRWM(i))

= log |E| − (1− β)LRWM(T ),

where the last inequality can be obtained by using the fact log (1− x) ≤ −x,∀x <
1. Such that LRWM(T ) and Le∗(T ) satisfy the following inequalities

LRWM(T ) ≤ log (1− (1− β))

1− β
Le∗(T ) +

log |E|
1− β

≤(1− β)T + Le∗(T ) +
log |E|
1− β

,

where the last inequality comes from the inequality − log (1− x) ≤ x+ x2,∀x ∈
[1, 1/2]. Thus, by setting β = max {1/2, 1−

√
logN
T
}we conclude the proof.

Although both the WM and RWM algorithms considered the binary prediction
with the 0-1 loss function, it is also possible to extend them with another loss
function.
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Initialize the weights for all e ∈ E with we,1 = 1, pe,1 = 1/|E| for all e ∈ E.
for t = 1, . . . ,∞ do

Observe experts’ predictions ye,t,∀e ∈ E.
Choose the prediction yt = ye,t with probability pe,t
Observe y∗t .
if yt 6= y∗t then

Update we,t, ∀e ∈ E according to

we,t+1 =

{
βwe,t if ye,t 6= y∗t
we,t otherwise

end if
Update pe,t+1 = we,t+1∑

e∈E we,t+1
for all e ∈ E.

end for

Figure 2.2: Randomized weighted majority algorithm
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Now we will present another stochastic algorithm called follow the perturbed
leader (FPL) algorithm (Cesa-Bianchi and Lugosi, 2006), which suggests that the
decision maker should follow the expert who performed best over previous tri-
als. As we claimed before, any deterministic algorithm cannot achieve a sublinear
regret in general. To randomized the strategy, a simple idea is to introduce a ran-
dom perturbation variable which leads the decision maker following the perturbed
leader instead of the real leader. Before introducing the algorithm, let us define the
perturbation random vectors as nt,∀t = 1, . . . ,∞. Thus, nt is a |E|-dimensional
vector with |E| random perturbation variables ne,t, e ∈ E for |E| experts. At each
time step t, the FPL algorithm chooses the prediction as yt = fIt,t where

It = argmine∈E

(
t−1∑
i=1

le,i + ne,t

)
.

In the above equation, we use le,i instead of l(ye,i, y∗i ) for notational simplicity.
Clearly, the regret of the FPL algorithm depends on the perturbation random vec-
tors nt, t = 1, . . . ,∞. The analysis of the FPL algorithm with a uniform random
vector is presented in Theorem 2.3.

Theorem 2.3. After T time steps, the regret against the best expert of the FPL
algorithm with uniform perturbation random variables on [0, ε] satisfies

LFPL(T ) ≤ ε+
T |E|
ε

.

Proof. The proof we present follows Cesa-Bianchi and Lugosi (2006), where the
main idea of the proof is to consider the predictor who looks one step ahead as

Ît = argmine∈E

(
t∑
i=1

le,i + ne,t

)
.

Note that Ît is not a real predictor, since le,t, ∀e ∈ E is not available at time step t.
However, we treat Ît as a fictitious predictor which does not perform much better
than It. Thus, the bound for the difference between Ît and the best expert e∗ can
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be obtain by following inequalities.

t∑
i=1

(
l(Îi, i) + nÎi,i − nÎi,i

)
≤ min

e∈E

t∑
i=1

(l(e, i) + ne,i − ne,i−1)

≤ min
e∈E

t∑
i=1

l(e, i) + ne∗,t. (2.1)

The perturbation random variables ne,t,∀e ∈ E, t = 1, . . . , T are considered as
uniform random variables in Hannan (1957), which is defined as

f(ne,t) =

{
1
ε
ne,t ∈ [0, ε],

0 otherwise.

Then taking expectation over Eq.(2.1) as

E
t∑
i=1

l(Îi, i) ≤min
e∈E

t∑
i=1

l(e, i) + Emax
e∈E

ne,t.

By defining Ft(n) = l(It, y
∗
t ), the fictitious predictor satisfies the following equa-

tion:

E
T∑
t=1

l(It, y
∗
t )− E

T∑
t=1

l(Ît, y
∗
t ) =

T∑
t=1

∫
Ft(n)(f(n)− f(n− lt))dn

≤T |E|
ε

,

which concludes the proof.

2.1.2 Online MDP Expert Algorithm

As a popular and important way to solve online decision making problems, expert
algorithms have been shown perform efficiently in an adversarial MDP scenario.
A major problem of using an expert algorithm is that there is no state structure
involved in the standard decision making problem. The agent (decision maker)
only need to choose an action at each time step. Even-Dar et al. (2003, 2009) pro-
posed the Markov decision process expert (MDP-E) algorithm, which associates
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each state with an expert algorithm. The idea is to train |S| expert algorithms for
|S| states. When the agent reach state st at time step t, the corresponding expert
algorithm Bst will choose the policy. After the reward function rt(s,a) is ob-
served, Bst will be adjusted by an appropriate feedback. Even-Dar et al. (2003,
2009) showed that the state-action value function Qπt

rt is a perfect choice, since
Qπt
rt provides the “global” information for the decision maker. We can observe the

state-action value function is a perfect evaluation of the policy by the following
equation

ρrt(π)− ρrt(πt) = Es∼dπ
[
Qπt
rt (s, π)−Qπt

rt (s, πt)
]
, (2.2)

where Es∼dπ [·] denotes the expectation taken over the stationary state distribution
dπ(s) = limk→∞ Pr(sk = s|π) generated by the policy π. The notation is slightly
abused by writing Qπ

r (s, π′) = Ea∼π′ [Qπ
r (s,a)]. Before introducing the formal

algorithm, we firstly present an essential assumption for expert algorithm (Even-
Dar et al., 2003, 2009).

Assumption 1. For two arbitrary state distributions d(s) and d′(s), for all policy
π, there exist a positive constant τ such that

‖d(s)P π − d′(s)P π‖1 ≤ e−1/τ‖d(s)− d′(s)‖1, (2.3)

where τ is assumed that τ ≥ 1, P π denotes the |S| × |S| matrix whose ss′th
element is pπ(s′|s) =

∑
a∈A π(a|s)p(s′|s,a).

τ is called mixing time which indicates the convergence rate of the MDP con-
verges to its steady status. Then, let us assume that the performance of expert
algorithms satisfies the following assumption.

Assumption 2. An optimized expert algorithm is an algorithm that selects a dis-
tribution qt over action space for any reward function sequence r1, . . . , rT , which
satisfies

T∑
t=1

Ea∼qt [rt(a)] ≤ sup
a∈A

T∑
t=1

rt(a)−
√
T log |A|,

where the action distributions qt do not change quickly:

‖qt − qt+1‖1 ≤
√

log |A|
t

.
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A number of expert algorithms satisfy the above assumption, such as the RWM
algorithm. Even-Dar et al. (2009) shows that there exists a parameter β such
that the RWM is an optimal expert algorithm. Next, we summarize the MDP-E
algorithm as shown in Figure 2.3. By Assumption 2, we can obtain the following
result by setting the expert algorithm as a black box.

Theorem 2.4. For any reward function sequence r1, . . . , rT , the MDP-E algo-
rithm satisfies

LMDP−E(T ) ≤ 4τ 2
√
T log |A|+

√
3Tτ log |A|+ 4τ.

Before showing the proof of Theorem 2.4, we introduce following lemmas:

Lemma 2.5. For two arbitrary policies π and π′, and any arbitrary state distri-
bution d, there is

‖dP π − dP π′‖1 ≤ ‖π(·|s)− π(·|s)‖1

Proof. For all s ∈ S, the transition probabilities induced by π and π′ satisfy∑
s′∈S

|pπ(s′|s)− pπ′(s′|s)|

=
∑
s′∈S

∑
a∈A

p(s′|s,a)|π(a|s)− π′(a|s)|

≤ ‖π(·|s)− π′(·|s)‖1.

Taking expectation over d(s),∀s ∈ S, we obtain∑
s∈S

d(s)
∑
s′∈S

|pπ(s′|s)− pπ′(s′|s)| ≤ ‖π(·|s)− π′(·|s)‖1

Lemma 2.6. For any arbitrary policy π, there is

‖dπ,t − dπ‖1 ≤ 2e−t/τ ,

where dπ is the stationary distribution of policy π, dπ,t is the state distribution at
time t following the initial distribution d1, i.e.

dπ,t = d1(P π)t.
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Put an experts Bs algorithm in every state.
for t = 1, . . . ,∞ do

Observe current state st.
Set the policy π(a|s) = at(st), where at(st) is the action distribution given
by Bst .
Take action at according to π(a|s).
Observe reward function rt and move to st+1.
Feed Bst with Qπt,rt(s, ·).

end for

Figure 2.3: MDP Expert (MDP-E) Algorithm

Proof. By recurring Eq.(2.3), there is

‖dπ,t − dπ‖1 =e−1/τ‖dπ,t−1P
π − dπP π‖1

≤e−1/τ‖dπ,t−1 − dπ‖1

≤e−t/τ‖d1 − dπ‖1

≤2e−t/τ ,

which concludes the proof.

Lemma 2.7. After T time steps, the cumulative rewards achieved by the MDP-E
algorithm satisfies

‖
T∑
t=1

ρrt(πt)−RMDP−E(T )‖ ≤ 4τ 2
√

log |A|T + 2τ.

Proof. By the definition of RMDP−E(T ), there is

T∑
t=1

ρrt(πt)−RMDP−E(T )

=
T∑
t=1

(∑
s∈S

∑
a∈A

dπt(s)πt(a|s)rt(s,a)−
∑
s∈S

∑
a∈A

dA,t(s)πt(a|s)rt(s,a)

)

≤
T∑
t=1

‖dπt − dA,t‖1,
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where the last part can be derived by following results.

‖dA,k − dπt‖1 = ‖dA,k−1P
πk − dA,k−1P

πt + dA,k−1P
πt − dπt‖1

≤ ‖dA,k−1P
πt − dπt‖1 + ‖dA,k−1P

πk − dA,k−1P
πt‖1

≤ ‖dA,k−1P
πt − dπtP πt‖1 + 2(t− k)

√
log |A|/t

≤ e−1/τ‖dA,k−1 − dπt‖1 + 2(t− k)
√

log |A|/t.

Such that

‖dA,t − dπt‖1 ≤ 2τ 2
√

log |A|/t+ 2e−t/τ ,

which concludes the proof.

As we showed earlier, the state-action value function Qπt
rt (s,a) is used for

updating the optimal expert algorithm at each time step. The state-action value
function can be treated as the “lost function” which evaluates the current policy.
Therefore, we can derive the following bound by Assumption 2 directly:

T∑
t=1

Ea∼π
[
Qπt
rt (s,a)

]
−

T∑
t=1

Ea∼πtQπt
rt (s,a) ≤

√
3τT log |A|.

Hence, the performance of the MDP-E algorithm satisfies

T∑
t=1

ρrt(π)−
T∑
t=1

ρrt(πt) ≤
√

3τT log |A|,

which can be obtained by Eq.(2.2). By decomposing the regret as

LMDP−E(T ) = Rπ(T )−RMDP−E(T )

=

(
Rπ(T )−

T∑
t=1

ρrt(π)

)
+

(
T∑
t=1

ρrt(π)−
T∑
t=1

ρrt(πt)

)

+

(
T∑
t=1

ρrt(πt)−RMDP−E(T )

)
,

we could concludes the proof of Theorem 2.4.
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2.1.3 Lazy Follow the Perturbed Leader

In this section, we introduce another expert algorithm based online MDP method
called lazy follow the perturbed leader (Lazy-FPL), which is motivated by the
FPL algorithm (Cesa-Bianchi and Lugosi, 2006). As same as the FPL algorithm,
the Lazy-FPL follows the best policy in the past with a vanishing random per-
turbation. For decreasing the computation complexity and achieving a sublinear
regret, the time horizon is partitioned into phases denoted by τ1, τ2, . . . , τm, . . .,
where |τm| denotes the length of the mth phase. The lengths of phases control the
frequency of switching policies, where the policy should not be switched too often
for making the decision stable. On the other hand, the policy should be switched
fast enough to adapt the changes of the reward functions. The formal algorithm
is presented in Figure 2.4. The regret of the Lazy-FPL satisfies the following
theorem.

Theorem 2.8. After T time steps, the regret of the Lazy-FPL algorithm satisfies

LLazy−FPL(T ) ≤ 4

3
(2τ + 2|A|+ 4τ + 1 + 2(|S|+ 3)|A|2τ log T )T−1/4+ε.

Before presenting the proof, let us introduce the following essential lemmas.

Lemma 2.9. The consecutive polices πm and πm+1 for all m = 1, 2, . . . satisfy

‖πm+1(·|s)− πm(·|s)‖1 ≤ (|S|+ 3)|A|2
(
ζm+1

|τm+1|
|τ0:m+1|+ ζm+1−ζm

ζm+1

)
,

and

‖dπm+1πm+1−dπmπm‖1 ≤ (|S|+3)|A|2
(
ζm+1

|τm+1|
|τ0:m+1|+ ζm+1−ζm

ζm+1

)
g+4e1−g/τ ,

where g is a positive integer.

Proof. Firstly, the solutions of two consecutive linear programming satisfy (Rene-
gar, 1994)

|λm+1 − λm| ≤ ‖r̂τ0:m+1 − r̂τ0:m|1 ≤
|τm+1|
|τ0:m+1|

, (2.4)

‖hm+1 − hm‖∞ ≤ 2(|S|+ 1)
|τm+1|
|τ0:m+1|

. (2.5)
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Initialize the policy by an arbitrary stationary policy.
for m = 1, . . . ,∞ do

Solve the linear program:

min
λ∈R,h∈R|S|

λ

s.t. λ+ h(s) ≥ r̂τ0:m−1(s,a) +
∑
s′∈S

p(s′|s,a)h(s′),∀s ∈ S,a ∈ A,

h(s+) = 0 for some fixed s+ ∈ S,

where r̂τ0:m−1(s,a) = 1
|τ0:m−1|

∑m−1
i=1

∑
t∈τi rt(s,a) and |τ0:m−1| =∑m−1

i=1 |τi|.
while t ∈ τm do

Choose the action

at = argmaxa∈A

{
r̂0:m−1(s,a) +

∑
s′∈S

p(s′|s,a)hm(s′) + nm(a)

}
,

where nm(a) is the random variable whose probability density function is
defined as

fnm(a) =

{
ζm
2
, if a ∈ [−1/ζm, 1/ζm],

0, otherwise.

end while
end for

Figure 2.4: Lazy Follow the Perturbed Leader (Lazy-FPL) Algorithm
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Denote the cumulative distribution functions of two consecutive random vari-
ables as nm+1 and nm, which satisfy for all a, a′ ∈ R

|Fnm+1(a)− Fnm(a)| ≤ ζm+1 − ζm
2ζm+1

, (2.6)

and

|Fnm+1(a)− Fnm+1(a
′)| ≤ ζm+1

2
|a− a′|. (2.7)

The policy πm+1(a|s) for all m = 0, . . . ,M can be rewritten as

πm+1(a|s) =Pr

(
r̂τ0:m+1(s,a) +

∑
s′∈S

p(s′|s,a)hm(s′) + nm+1(a)

> r̂τ0:m+1(s,a
′) +

∑
s′∈S

p(s′|s,a′)hm(s′) + nm+1(a′),∀a′ ∈ A

)

=
∏
a′∈A

Pr

(
nm+1(a)− nm+1(a′) > r̂τ0:m+1(s,a

′)− r̂τ0:m+1(s,a)

+
∑
s′∈S

p(s′|s,a′)hm(s′)−
∑
s′∈S

p(s′|s,a)hm(s′)

)
.

Combining Equations (2.4), (2.5), (2.6) and (2.7), we obtained the claimed result
of Lemma 2.9.

Lemma 2.10. For all m = 1, 2, . . ., the policy πm satisfies

ρr̂τ0:m−1
(π∗m)− ρr̂τ0:m−1

(πm) ≤ 2|A|
ζ2
m

,

where π∗m is the optimal policy for m phases as

π∗m = argmaxπ ρr̂τ0:m−1
(π).
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Proof. Similarly to the proof of Lemma 2.10, for all s ∈ S there is

πm(a|s)

=Pr

(
nm(a) + r̂τ0:m−1(s,a) +

∑
s′∈S

p(s′|s,a)hm(s′)

> nm(a∗) + r̂τ0:m−1(s,a
∗) +

∑
s′∈S

p(s′|s,a∗)hm(s′)

)

≤



ζm
4

( 2
ζm
− (r̂τ0:m−1(s,a

∗) r̂τ0:m−1(s,a
∗)

+
∑
s′∈S p(s

′|s,a∗)hm(s′) +
∑
s′∈S p(s

′|s,a∗)hm(s′)

−r̂τ0:m−1(s,a) if − r̂τ0:m−1(s,a)

+
∑
s′∈S p(s

′|s,a)hm(s′)))2, +
∑
s′∈S p(s

′|s,a)hm(s′)) ≤ 2
ζm

0, otherwise.

By rewriting the policy as above expression, we can obtain

ρr̂τ0:m−1
(π∗m)− ρr̂τ0:m−1

(πm) ≤max
s∈S

∑
a6=a∗

(r̂τ0:m−1(s,a
∗) +

∑
s′∈S

p(s′|s,a∗)hm(s′)

− r̂τ0:m−1(s,a) +
∑
s′∈S

p(s′|s,a)hm(s′))πm(a|s)

≤2|A|
ζ2
m

,

which concludes the proof.

Following the result of Lemma 2.9, we obtain the following results by setting
ζm =

√
|τ0:m| and g = τ log (|τ0:m+1|)

‖dπm+1πm+1 − dπmπm‖1 ≤ 2(|S|+ 3)|A|2τ |τm+1| log (|τ0:m+1|)
|τ0:m+1|

+
4

|τ0:m+1|
Given the fact |τm||τm+1| log (|τ0:m+1|) ≤ log (T )|τ0:m+1|1/2, the sum of the above
inequality satisfies

M−1∑
m=0

∑
t∈τm

ρrt(πm+1)−
M−2∑
m=0

∑
t∈τm

ρrt(πm) ≤ 2(|S|+ 3)|A|2τ log T + 4. (2.8)

Since πm+1 is the perturbed optimal policy over m phases, the effect of the per-
turbed random variables is bounded as

M−2∑
m=0

∑
t∈τm

ρrt(πM+1) ≤
M−2∑
m=0

∑
t∈τm

ρrt(πm+1) + 2(M − 2)|A|.
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The above inequality can be obtained by induction. It is clear that the following
statement holds with M = 2,

ρr0(π1) = ρr0(π1).

Then we assume that for some positive integer M, there is

M∑
m=0

∑
t∈τm

ρrt(πM+1) ≤
M∑
m=0

∑
t∈τm

ρrt(πm+1) + 2M|A|.

Thus, we obtain the following result with M + 1,

M+1∑
m=0

∑
t∈τm

ρrt(πm+1) ≥
M∑
m=0

∑
t∈τm

ρrt(πm+1)

≥
M∑
m=0

∑
t∈τm

ρrt(πM+1)− 2M|A|

≥
M∑
m=0

∑
t∈τm

ρrt(π
∗
M+1)− 2M|A| − 2|A| |τ0:M|

ζ2
M+1

≥
M∑
m=0

∑
t∈τm

ρrt(π
∗
M+2)− 2M + 1|A|. (2.9)

Therefore, we obtain the claimed result of Theorem 2.8 by combining Equ.(2.8)
and Equ.(2.9),

sup
π

T∑
t=1

ρrt(π) ≤
T∑

m=0

∑
t∈τm

ρrt(πm)

+(M − 1)(4 + 2(|S|+ 3)|A|2τ log (T )) + 2(M − 1)|A|+M1/3.

2.2 Online MDPs with Online Linear Optimization

In this section, we introduce another class of online MDP algorithms which use
online linear optimization techniques. By observing the objective function of re-
gret minimization, the online MDP problems can be simplified as linear learning
problems by using the notion of the stationary occupancy measure. First of all,
we review two major online convex optimization algorithms. Then we show the
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mechanism of solving online MDPs with online linear optimization. Moreover,
we provide an analysis for some state of the art algorithms with explicit regret
bounds.

2.2.1 Online Convex Optimization

Online convex optimization problems are a special kind of online decision mak-
ing problems involving a convex compact set and a set of convex cost functions.
Formally, the online convex optimization problem is defined as follows:

• for t = 1 to∞

1. Select a vector xt ∈ X , where X ⊂ Rd is a convex compact vectors
set.

2. Reveal the convex cost function ct : X → [0, 1] to the decision maker.

3. Suffer cost ct(xt).

Recall the expert prediction algorithm, the regret is defined with respect to a
best expert over the experts set. Similarly, the regret of the online convex opti-
mization algorithm A with respect to X over T time steps is defined as

RA(T ) =
T∑
t=1

ct(xt)−min
x∈X

T∑
t=1

ct(x).

In the rest of this section, we introduce two algorithms: the online gradient
descent (OPG) algorithm (Zinkevich, 2003) and the online mirror descent (OMD)
algorithm (Beck and Teboulle, 2003; Shalev-Shwartz, 2011).

Zinkevich (2003) proposed a gradient descent based algorithm for online con-
vex optimization with greedy projection. The main idea is to apply gradient de-
scent in Rd real space, and project the vector back to X . At time step t, after the
cost function ct is revealed the prediction vector is updated as

xt+1 = P (xt − ηt∇ct(xt)),

where ηt is the step size. The greedy projection P is defined as

P (x̃) = argminx∈X ‖x− x̃‖2.

Before analyzing the regret, we introduce the assumptions required in the analysis:
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1. X is compact bounded nonempty set.

2. The cost functions are differentiable. The gradient ∇ct satisfies

∇ct(x) ≤ G,∀x ∈ X, t = 1, . . . ,∞

Theorem 2.11. Let ηt = 1√
t
,∀t = 1, . . . , T , the regret of the OGD algorithm over

T time steps is bounded as

LOGD(T ) ≤ |X|
2
√
T

2
+ (
√
T − 1

2
)G2.

Proof. The proof is provided in Zinkevich (2003). Since for all t = 1, . . . , T

the cost function ct is convex, then we can obtain the following result from the
definition of convexity:

ct(x)− ct(xt) ≥ (∇ct(xt)) · (x− xt),∀x ∈ X.

Note that the greedy projection P satisfies (P (x̃)− x)2 ≤ (x̃− x)2. Then we
can obtain

(xt+1 − x)2 ≤ (xt − ηt∇ct(xt)− x)2

≤ (xt − x)2 + η2
tG

2 − 2(xt − x)ηt∇ct(xt).

By rearranging the above result and defining the best vector x∗ as

x∗ = argminx∈X

T∑
t=1

ct(x),

we get

(xt − x)∇ct(xt) ≤
1

2ηt

(
(xt − x)2 − (xt+1 − x)2

)
+
ηt
2
G2.
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Then the regret can be bounded as

LOGD(T ) =
T∑
t=1

(ct(xt)− ct(x∗))

≤
T∑
t=1

((xt − x∗) · ∇ct(xt))

≤
T∑
t=1

1

2ηt

(
(xt − x∗)2 − (xt+1 − x∗)2

)
+
ηt
2
G2

≤ 1

2η1

(x1 − x∗)2 − 1

2ηT
(xT+1 − x∗)2 +

1

2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
(xt − x∗)2

+
G2

2

T∑
t=1

ηt

≤|X|2 1

2ηT
+
G2

2

T∑
t=1

ηt

Judiciously setting the step size as ηt = 1√
t
, we can conclude the proof.

Now we move to a sharper regret bound of the OGD algorithm with a stronger
assumption (Hazan et al., 2007):

Theorem 2.12. If the cost functions ct, t = 1, . . . , T are H-strong convex, the
second derivatives of the cost functions satisfy

∇2ct(x) � HId,

where Id is the d-dimensional identity matrix. Then the regret bound of OGD
algorithm over T trails satisfies

LOGD(T ) ≤ G2

2H
(1 + log T ),

where the step size is ηt = 1
Ht

.

Proof. The basic idea of this proof (Hazan et al., 2007) follows the same line
with Zinkevich (2003)’s analysis. Firstly, we expand the cost function by Taylor’s
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theorem as

ct(x
∗) =ct(xt) +∇ct(xt) · (x∗ − xt) +

1

2
(x∗ − xt)>∇2ct(ζt)(x

∗ − xt)

≥ct(xt) +∇ct(xt) · (x∗ − xt) +
H

2
(x∗ − xt)>(x∗ − xt),

where ζt is a vector between x∗ and xt, such that the above expansion holds. By
rearranging this result, we obtain

ct(xt)− ct(x∗) ≤ ∇ct(xt) · (x∗ − xt)−
H

2
(x∗ − xt)>(x∗ − xt).

Thus,

LOGD(T ) =
T∑
t=1

(ct(xt)− ct(x∗))

≤
T∑
t=1

1

2ηt

(
(xt − x∗)2 − (xt+1 − x∗)2

)
+
ηt
2
G2 − H

2
(xt − x∗)2

≤G
2

2

T∑
t=1

ηt,

which concludes the proof.

Considering the generalization of the OGD algorithm, the online mirror de-
scent (OMD) algorithm is proposed for solving online convex optimization prob-
lems. More precisely, the online mirror descent solves online convex optimization
as a regularized minimization which can be expressed as

xt+1 = argminx∈X

(
η

t∑
i=1

ci(x) +R(x)

)
.

Here, R(x) is the regularization which keeps the predictions stable. Note that the
trade off between minimizing ct(x) and keeping xt+1 close to xt. By this expres-
sion, we can fit the OGD algorithm into the OMD framework with R(x) = ‖x‖2

2
.

However, we will consider another distance measure “Bregman Divergence” in-
stead of the l2 norm. The Bregman divergence is defined with respect to a Legen-
dre function f : Rd → R as

Df (a, b) = f(a)− f(b)−∇f(b) · (a− b),∀a, b ∈ Rd.
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At each time step, a regularized minimization is solved and the prediction is “mir-
rored” to the feasible set X via the Bregman projection. The update rule is given
as follows:

• Initialize x̃1 = 0.

• for t = 1 to∞

1. Update the prediction vector as

xt = PR(x̃t),

where PR(x′) = argminx∈X DR(x,x′), DR(·, ·) is the Bregman di-
vergence defined with respect to the regularization function.

2. Update x̃ as

x̃t+1 = (∇R)−1(∇R(x̃t)− η∇ct(x̃t)).

The regret of the OMD algorithm can be summarized as following theorem:

Theorem 2.13. After T time steps, the regret of the OMD algorithm is
bounded as

LOMD(T ) ≤ DR(x,x1)

η
+

1

η

T∑
t=1

DR(xt,xt+1).

Proof. The proof we present follows Cesa-Bianchi and Lugosi (2006). Firstly,
let us show that the update rule of the OMD algorithm leads us to the solu-
tion of the following unconstrained minimization:

x̃t+1 = argminx∈Rd

(
η

t∑
i=1

∇ci(x̃i) · x+R(x)

)
.

By taking the derivative and setting it to zero, we have

∇R(x̃t+1) = −η
t∑
i=1

∇ci(x̃i),

∇R(x̃t) = −η
t−1∑
i=1

∇ci(x̃i).
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Thus we obtain ∇R(x̃t+1) = ∇R(x̃t) − η∇ct(x̃t), which is equivalent to
the update rule of the OMD algorithm. Let us define the potential functions
as

φ0 = R, φt+1 = φt + η∇ct+1(x̃t+1).

It is clear that

x̃t+1 = argminx∈Rd φt(x),

so that

∇φt(x̃t+1) = ∇φt−1(x̃t) = . . . = ∇φ0(x̃1) = 0.

Since the cost functions are convex, we have

T∑
t=1

(ct(xt)− ct(x)) ≤
T∑
t=1

∇ct(xt) · (xt − x),∀x ∈ Rd.

Thus, we obtain the following results

T∑
t=1

∇ct(x̃t) · (x̃t − x) =
T∑
t=1

∇ct(x̃t) · x̃t − φT (x) +R(x)

≤
T∑
t=1

∇ct(x̃t) · x̃t − φT (x̃T+1) +R(x)

≤
T∑
t=1

(φt(x̃t)− φt(x̃t+1)) +R(x)−R(x̃1)

=DR(x̃t, x̃t+1) +DR(x, x̃1).

By the Bregman projection, the constrained minimization is equivalent to
the unconstrained minimization as

xt+1 = PR(x̃t+1),

where xt+1 = argminx∈X φt(x), x̃t+1 = argminxRd
φt(x), such that we

obtain the claimed result.
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2.2.2 MD2 for Online MDP

As we have shown in Section 2.1, the regret of any online MDP algorithm A can
be decomposed as follows,

LA(T ) ≤
T∑
t=1

ρrt(π)−
T∑
t=1

ρrt(πt) + T (τ + 1)δ + 4τ + 4, (2.10)

where E[‖dπt − dπt−1‖1],∀t = 2, . . . , T , πt, t = 1, . . . , T are given by A. Since
Assumption 1 gives the convergence rate of the state distribution to the stationary
distribution, the regret minimization could be done by finding a slowly changing
stationary state distribution sequence. By the definition of ρrt(π), the first part of
the above inequality is the regret of a linear optimization problem as

T∑
t=1

∑
s∈S

∑
a∈A

rt(s,a)dπ(s,a)−
T∑
t=1

∑
s∈S

∑
a∈A

rt(s,a)dπt(s,a).

Therefore, the online MDP problem is equivalent to an online linear optimization
problem consisting of following components:

• A convex feasible set X ⊂ [0, 1]|S|×|A|, which satisfies

K =
{
µ ∈ [0, 1]|S|×|A| :

∑
s∈S,a∈A

µ(s,a) = 1,

∑
a′∈A

µ(s′,a′) =
∑

s∈S,a∈A

µ(s,a)p(s′|s,a),∀s′ ∈ S

}
.

• An infinite sequence of linear functions {〈r1, µ〉, 〈r2, µ〉, . . .}, where 〈rt, µ〉 =∑
s∈S,a∈A rt(s,a)µ(s,a) for t = 1, 2, . . ..

The feasible set K is the set of the stationary occupancy measures induced by all
the Markovian policies. At each time step t, an online linear optimization algo-
rithm selects a point µt ∈ K. After T time steps, the sequence µt, t = 1, 2, . . . , T

satisfies
T∑
t=1

〈rt, µ〉 −
T∑
t=1

〈rt, µt〉 = o(T ).

By Eq.(2.10), we observe that any online linear optimization algorithm also achieves
a sublinear regret for online MDP problems as long as the decision vector does
not change frequently.
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As we have shown in the previous section, many online convex optimization
algorithms could be proved to perform well for the online MDP problems, e.g.
the online gradient descent method and the online mirror descent method. Next
we present a specific algorithm called MD2 for online MDPs based on the online
mirror descent.

MD2 is an efficient implementation of the mirror descent algorithm with ap-
proximate projections. Dick et al. (2014) used the second order regularizerR(µ) =
1
2
‖µ‖2

2, which reduces the Bregman divergence and the Bregman projection to the
Euclidean distance and the Euclidean projection, respectively. The benefit of this
regularizer is that the approximate projection can be obtained as the solution of a
quadratic programming problem. Before showing the regret result, we introduce
an additional assumption.

Assumption 3. The stationary occupancy measures induced by all the Markovian
policies and the transition probabilities are lower bounded by β > 0. Such that
the feasible set K satisfies

K =
{
µ ∈ [β, 1]|S|×|A| :

∑
s∈S,a∈A

µ(s,a) = 1,

∑
a′∈A

µ(s′,a′) =
∑

s∈S,a∈A

µ(s,a)p(s′|s,a),∀s′ ∈ S

}
.

• Initialize µ1 ∈ K by arbitrary point, where K ⊂ [β, 1]|S|×|A|.

• For t = 1, . . . ,∞

1. Update the µ̃t+1 by

µ̃t+1 = argminµ∈R|S|×|S| (η〈lt, µ〉+DR(µ, µt)) ,

which can be expressed in closed form efficiently.

2. Project µ̃t+1 back into the feasible set by the projection

µt+1 = PR(µ̃t+1),

which can be approximated by the c-approximate projections satisfies

‖µt+1 − PR(µ̃t+1)‖1 ≤ c.
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The performance of the MD2 algorithm on online MDP problems is analyzed
in the following theorem.

Theorem 2.14. For any µ1 ∈ K, the regret of the MD2 algorithm after T time
steps satisfies

LMD2(T ) ≤ 2
√

(2τ + 3)TDR(µ, µ1) + 2
√
T + 4τ + 4,

where η =
√

DR(µ,µ1)
T (2τ+3)

and c = βη
T

.

Proof. The proof of Theorem 2.14 follows Equ.(2.10) with the following lemma.

Lemma 2.15. After T time steps, the MD2 algorithm gives the prediction se-
quence µ1, µ2, . . . , µT for the online linear optimization problem with reward
functions r1, . . . , rT . Then for any µ ∈ K, there is

T∑
t=1

〈rt, µ− µt〉 ≤
T∑
t=1

〈rt, µt − µ̃t+1〉+
DR(µ, µ1)

η
+
cT

βη
,

where µ̃t+1 = µte
−ηrt .

The proof of Lemma 2.15 can be directly obtained by Theorem 2.13.



Chapter 3

Online Policy Gradient for
Continuous States and Actions
Online MDPs

We consider the learning problem under an online Markov decision process (MDP),
which is aimed at learning the time-dependent decision-making policy of an agent
that minimizes the regret — the difference from the best fixed policy. The diffi-
culty of online MDP learning is that the reward function changes over time. In
this chapter, we show that a simple online policy gradient algorithm performs
asymptotically equal to the best fixed policy by parameterizing the policy space.
Furthermore, it achieves regret O(

√
T ) for T steps under a certain concavity as-

sumption and O(log T ) under a strong concavity assumption. To the best of our
knowledge, this is the first work to give an online MDP algorithm that can handle
continuous state, action, and parameter spaces with guarantee. We also illustrate
the behavior of the proposed online policy gradient method through experiments.

3.1 Introduction

As shown in Section 2.1, the MDP expert algorithm (MDP-E), which chooses
the current best action at each state, was shown to achieve regret O(

√
T log |A|)

(Even-Dar et al., 2003, 2009), where |A| denotes the cardinality of the action
space. Although this bound does not explicitly depend on the cardinality of the

47
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state space, the algorithm itself needs an expert algorithm for each state, and thus
large state space may not be handled in practice. The lazy follow-the-perturbed-
leader (lazy-FPL) divides the time steps into short periods and policies are updated
only at the end of each period using the average reward function (Yu et al., 2009).
This lazy-FPL algorithm was shown to have regretO(T 3/4+ε log T (|S|+|A|)|A|2)

for ε ∈ (0, 1/3). The online MDP problem is formulated as an online linear opti-
mization problem in Dick et al. (2014). By introducing the stationary occupation
measures, the mirror descent with approximate projections was shown to have
regret O(

√
T ). However, the algorithm assumes that both the state and action

spaces are finite. Furthermore it is not straightforward to extend their theoretical
results into continuous problems without additional assumptions. Yu et al. (2009),
Abbasi-Yadkori et al. (2013), and Neu et al. (2012) considered even more chal-
lenging online MDP problems under unknown or changing transition dynamics.

In many real problems, full information of the reward function may be hard to
acquire, but only the value of the reward function for the current state and action is
available. Such a setup, called the bandit feedback scenario, has attracted a great
deal of attention recently. An extension of the lazy-FPL method to the bandit
feedback scenario, called the exploratory-FPL algorithm (Yu et al., 2009), was
shown to have regret o(T ). Neu et al. (2010b) proposed a method based on MDP-
E that uses an unbiased estimator of the reward function, and showed that its regret
is O(T 2/3(lnT )1/3 ln |A|). Neu et al. (2014) further improved the regret bound to
O(
√
T lnT ln |A|). However, this algorithm cannot be used in continuous state

and action problems.

In this chapter, we propose an online policy gradient (OPG) algorithm that
can be implemented in a straightforward manner for problems with continuous
state and action spaces. Under the assumption that the expected average reward
function is concave, we prove that the regret of our OPG algorithm with respect
to a compact and convex parametric policies set is O(

√
T (F 2 + N)), which is

independent of the cardinality of the state and action spaces, but is dependent on
the diameter F and dimension N of the parameter space. Furthermore, regret
O(N2 log T ) is also proved under a strong concavity assumption on the expected
average reward function. We also extend the proposed algorithm to a bandit feed-
back scenario, and theoretically prove that the regret bound of the proposed al-
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gorithm is O(
√
T ) with the concavity assumption. We numerically illustrate the

superior behavior of the proposed OPG algorithm in continuous problems over
MDP-E with different discretization schemes.

3.2 Online Policy Gradient (OPG) algorithm

In this section, we firstly present involved preliminaries of the online MDP prob-
lem. Then we introduce the proposed online policy gradient algorithm with full
information and bandit feedback.

3.2.1 Preliminaries

An online MDP algorithm produces a stochastic time-dependent policy, which is a
conditional probability density of action a to be taken given current state s at each
time step. In this chapter, we suppose that the online MDP algorithm A outputs
parameter θt = [θ

(1)
t , . . . , θ

(N)
t ]> ∈ Θ ⊂ RN of stochastic policy π(a|s;θt) at

each time step t, where Θ is a convex and compact parameter set. Thus, algorithm
A gives a sequence of policies:

π(a|s;θ1), π(a|s;θ2), . . . , π(a|s;θT ).

Ideally, the objective is to maximize the expected cumulative reward over T
time steps of algorithm A, which can be denoted as

RA(T ) = E

[
T∑
t=1

rt(st,at)
∣∣∣A] . (3.1)

In above definition, E[·|A] denotes the expectation over the joint state-action dis-
tribution pt(s,a|A) given the algorithm A has been followed at each time step.
The state-action distribution induced by A and the transition density at time step
t can be expressed as

pt(s,a|A) = dA,t(s) · π(a|s;θt),

where the state distribution induced by A at time step t is defined as

dA,t(s) = p(st = s|A).
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As we mentioned earlier, maximizing the objective defined in Eq.(3.1) is not pos-
sible, since we cannot observe all T reward functions during the process of online
decision making problem. Here, we instead design algorithm A that minimizes
the regret against the baseline which is the best parametric offline policy defined
by

LA(T ) = Rθ∗(T )−RA(T ).

In above definition of the regret, we suppose that there exists θ∗ such that policy
π(a|s;θ∗) maximizes the expected cumulative rewards:

Rθ∗(T ) = E

[
T∑
t=1

rt(st,at)
∣∣∣θ∗] .

The best offline parameter θ∗ is given by

θ∗ = argmaxθ∈Θ E

[
T∑
t=1

rt(st,at)
∣∣∣θ] , (3.2)

where E[·|θ] denotes the expectation over the state-action distribution given the
policy π(a|s;θ) has been followed at each time step.

In this chapter, we assume that all candidate policies are parameterized by the
parameter θ, which is different from related works with finite states and actions
(Even-Dar et al., 2003, 2009; Neu et al., 2010b; Yu et al., 2009; Dick et al., 2014).
For continuous problems, it is a common choice to use a parametric policy (e.g.,
the Gaussian policy) which was demonstrated to work well (Sutton and Barto,
1998; Peters and Schaal, 2006). For this reason, the best offline policy defined in
Eq.(3.2) is a suitable baseline given that the best policy with respect to the class
of all Markovian policies is not a suitable baseline for continuous problems. If the
regret is bounded by a sub-linear function with respect to T , the algorithm A is
shown to be asymptotically as powerful as the best offline policy.

3.2.2 OPG Algorithm

Differently from the previous works (Even-Dar et al., 2003, 2009; Neu et al.,
2010b), we do not use the expert algorithm in our method, because it is not suit-
able for handling continuous state and action problems. Instead, we consider a
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gradient-based algorithm which updates the parameter of policy θ along the gra-
dient direction of the expected average reward function at each time step t.

More specifically, we assume that all the MDPs are ergodic whose state tran-
sitions are induced by the transition density p(s′|s,a) and the parametric policy
π(a|s;θ),∀θ ∈ Θ. Then every policy π(a|s;θ) has a unique stationary state
distribution dθ(s):

dθ(s) = lim
t→∞

p(st = s|θ).

Note that the stationary state distribution satisfies

dθ(s
′) =

∫
s∈S

dθ(s)

∫
a∈A

π(a|s;θ)p(s′|s,a)dads.

Let ρrt(θ) be the expected average reward function of policy π(a|s;θ) at time
step t:

ρrt(θ) =Es∼dθ(s),a∼π(a|s;θ) [rt(s,a)]

=

∫
s∈S

dθ(s)

∫
a∈A

rt(s,a)π(a|s;θ)dads, (3.3)

where the expectation is taken over the stationary state-action distribution of pol-
icy π(a|s;θ).

Then our online policy gradient (OPG) algorithm is given as follows:

• Initialize policy parameter θ1.

• for t = 1 to∞

1. Observe current state st = s.

2. Take action at = a according to current policy π(a|s;θt).

3. Observe reward rt from the environment.

4. Move to next state st+1.

5. Update the policy parameter as

θt+1 = P (θt + ηt∇θρrt(θt)) , (3.4)
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where P (ϑ) = arg minθ∈Θ ‖ϑ − θ‖ is the projection function on pa-
rameter space, ‖ · ‖ denotes the Euclidean norm. ηt = 1√

t
is the step

size, and∇θρrt(θ) is the gradient of ρrt(θ):

∇θρrt(θ) ≡
[
∂ρrt(θ)

∂θ(1)
, . . . ,

∂ρrt(θ)

∂θ(N)

]>
=

∫
s∈S

∫
a∈A

dθ(s)π(a|s;θ)(∇θ ln dθ(s) +∇θ ln π(a|s;θ))

× rt(s,a)dads. (3.5)

In Eq.(3.5), the facts ∇θ ln dθ(s) = ∇θdθ(s)
dθ(s)

and ∇θ ln π(a|s;θ) = ∇θπ(a|s;θ)
π(a|s;θ)

are used. If it is time-consuming to obtain the exact stationary state distribution,
gradients estimated by a reinforcement learning algorithm may be used instead
in practice. Since the transition and reward functions are known to the agent,
it is straightforward to estimate the gradient efficiently by using a reinforcement
learning technique (e.g., REINFORCE and policy gradients with parameter based
exploration) (Sutton and Barto, 1998; Williams, 1992; Sehnke et al., 2010). Fur-
thermore, some reinforcement learning techniques provided a convergence guar-
antee for the gradient estimation. Especially in the REINFORCE algorithm, the
gradient is approximated by the empirical average value ∇θρ̄t(θ) after sufficient
trajectories are collected as

∇θρ̄rt(θ) =
1

|H|

|H|∑
n=1

L∑
i=1

∇θ log π(ai|si;θ)R(hn),

where hn is a roll-out sample denoted as hn = [s1,a1, . . . , sL,aL], the set of
collected trajectories with length L is H = {h1,h2, . . . ,h|H|}, and R(hn) is
the average reward obtained by trajectory hn. With theoretical guarantee, the
REINFORCE algorithm has been shown to converge to the true gradient as |H|
and L tend to infinity. In the following analysis, we ignore the approximation
error since it could be arbitrarily small by collecting a large enough number of
samples.

When the reward function does not changed over time, the OPG algorithm is
reduced to the ordinary policy gradient algorithm (Williams, 1992), which is an
efficient and natural algorithm for continuous state and action MDPs. The OPG al-
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gorithm can also be regarded as an extension of the online gradient descend algo-
rithm (Zinkevich, 2003), which maximizes

∑T
t=1 ρrt(θt), not E

[∑T
t=1 rt(st,at)|A

]
.

As we showed in the definition of ρrt(θt), the stationary state distribution dθt(s) of
policy π(a|s;θt) is used, which is different from the state distribution dA,t(s) used
in E

[∑T
t=1 rt(st,at)|A

]
. As we will prove in Section 3.3, the regret bound of the

OPG algorithm is O(
√
T ) under a certain concavity assumption and O(log T )

under a strong concavity assumption on the expected average reward function.
Unlike previous works (Even-Dar et al., 2003, 2009; Yu et al., 2009; Neu et al.,
2010b), these bounds do not depend on the cardinality of state and action spaces.
Therefore, the OPG algorithm would be suitable for handling continuous state and
action online MDPs.

3.2.3 OPG with Bandit Feedback

Here we extend the OPG algorithm to the bandit feedback scenario, where the
entire reward function is not available, but only the value of the reward function
for the current state and action is observed:

s1,a1, r1(s1,a1), . . . , st,at, rt(st,at).

Due to lack of the entire reward function, we replace reward function rt in the
OPG algorithm with a random reward function given by

r̂t(s,a) =
rt(s,a)

dA,t(s)π(a|s;θt)
δ(st = s,at = a). (3.6)

Note that the above reward function is an unbiased estimator of rt(s,a) for all
t = 1, . . . , T (Yu et al., 2009):

Ept(s,a)[r̂t(s,a)|A] =rt(s,a),∀s ∈ S,a ∈ A.

In above equation, Ep(st,at)[·|A] denotes the expectation over the joint state-action
distribution pt(s,a) by the policies picked by algorithm A at time step t, where
pt(s,a) = dA,t(s)π(a|s;θt). By the definition ρrt(θ) = Es∼dθ(s),a∼π(a|s;θ)[rt(s,a)],
the estimated expected average reward function satisfies

Ept(s,a) [ρ̂rt(θ)|A] = ρrt(θ),
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where
ρ̂rt(θ) =

∫
s∈S

dθ(s)

∫
a∈A

r̂t(s,a)π(a|s;θ)dads.

The gradient of ρ̂rt(θ) with respect to the parameter θ can be obtained by passing
the derivative through the integral as

Ept(s,a)

[
∂ρ̂rt(θ)

∂θ
|A
]

=

∫
s∈S

∫
a∈A

dA,t(s)π(a|s;θt)
∂ρ̂rt(θ)

∂θ
dads

=

∫
s∈S

∫
a∈A

(
∂ log dθ(s)

∂θ
+
∂ log π(a|s;θ)

∂θ

)
× dθ(s)π(a|s;θ)rt(s,a)dads

=
∂ρrt(θ)

∂θ
.

As the above equation shows, we replaced the gradient of the expected average
reward function ∂ρrt (θ)

∂θ
in Eq.(3.4) with its unbiased estimator ∂ρ̂rt (θ)

∂θ
.

As will be proved in Section 3.4, the regret bound of the OPG method with
bandit feedback is still O(

√
T ), although the bound is looser than that in the full-

feedback case. If it is not possible to calculate the state distribution directly, its
estimate obtained by reinforcement learning may be employed in practice (Ng
et al., 1999).

3.3 Regret Analysis with Full Feedback

In this section, we present the main theorem of the proposed online policy gradient
algorithm with full information feedback.

3.3.1 Assumptions

First, we introduce the assumptions required in the proofs. Some assumptions
have already been used in related works for discrete state and action MDPs, and
we extend them to continuous state and action MDPs.

Assumption 4. There exists a positive number τ , such that for two arbitrary dis-
tributions d and d′ over S and for every policy parameter θ ∈ Θ,∫

s∈S

∫
s′∈S
|d(s)− d′(s)|p(s′|s;θ)ds′ds ≤e−1/τ

∫
s∈S
|d(s)− d′(s)|ds,
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where

p(s′|s;θ) =

∫
a∈A

π(a|s;θ)p(s′|s,a)da.

τ is called the mixing time (Even-Dar et al., 2003, 2009).

Assumption 5. There exists a positive constant C1 depending on the specific pol-
icy model π, such that for two arbitrary policy parameters θ and θ′ and for every
s ∈ S, ∫

a∈A
|π(a|s;θ)− π(a|s;θ′)|da ≤ C1‖θ − θ′‖1,

where ‖ · ‖1 denotes the L1 norm.

The Gaussian policy is a common choice in continuous state and action MDPs.
Below, we consider the Gaussian policy with mean µ(s) = θ>φ(s) and standard
deviation σ, where θ is the policy parameter and φ(s) : S → RN is the basis
function. The KL-divergence between these two policies is given by

D(p(·|s;θ)||p(·|s;θ′)) =

∫
a∈A
Nθ,σ(a) {logNθ,σ(a)− logNθ′,σ(a)} da

=

∫
a∈A
Nθ,σ(a)

{
1

2σ2

(
−(a− θ>φ(s))2 + (a− θ′>φ(s))2

)}
da

≤‖φ(s)‖2
∞

2σ2
‖θ − θ′‖2

1.

By Pinsker’s inequality, the following inequality holds:

‖p(·|s,θ)− p(·|s,θ′)‖1 ≤
‖φ(s)‖∞

σ
‖θ − θ′‖1. (3.7)

This implies that the Gaussian policy model satisfies Assumption 5 with C1 = Φ
σ

,
where ‖φ(s)‖∞ ≤ Φ,∀s ∈ S. Note that we do not specify any policy model
in the analysis, and therefore the following theoretical analysis is valid for other
stochastic policy models as long as the assumptions are satisfied.

Assumption 6. All the reward functions in online MDPs are bounded. For sim-
plicity, we assume that the reward functions satisfy

rt(s,a) ∈ [0, 1], ∀s ∈ S,∀a ∈ A, ∀t = 1, . . . , T.
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Assumption 7. For all t = 1, . . . , T , the second derivative of the expected aver-
age reward function satisfies

∇2
θρrt(θ) ≤ 0, (3.8)

where θ ∈ Θ and Θ is the parameter set which is convex and compact.

This assumption means that the expected average reward function is concave,
which is currently our sufficient condition to guarantee the O(

√
T )-regret bound

for the OPG algorithm. This assumption can be relaxed to locally concave ex-
pected average reward functions, where all the results still hold locally. More
specifically the standard policy gradient algorithm (Sutton and Barto, 1998; Pe-
ters and Schaal, 2006) has been shown to converge to a local optimal solution, and
we use a local optimal policy as the baseline in the definition of the regret instead
of the global optimal solution.

3.3.2 Regret Bound with Concavity

In this section, we present our main result on the regret bound of the OPG algo-
rithm under Assumption 7.

Theorem 3.1. The regret against the best offline policy of the OPG algorithm is
bounded as

LA(T ) ≤
√
T
F 2

2
+
√
TC2N + 2

√
Tτ 2C1C2N + 4τ,

where F is the diameter of Θ and C2 = 2C1−C1e−1/τ

1−e−1/τ .

Note that the constant C1 depends on the specific policy model involved which
is claimed in Assumption 5.

To prove the above theorem, we decompose the regret in the same way as the
previous work (Even-Dar et al., 2003, 2009; Neu et al., 2010a,b):

LA(T ) =Rθ∗(T )−RA(T )

≤

(
Rθ∗(T )−

T∑
t=1

ρrt(θ
∗)

)
+

(
T∑
t=1

ρrt(θ
∗)−

T∑
t=1

ρrt(θt)

)

+

(
T∑
t=1

ρrt(θt)−RA(T )

)
. (3.9)
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In the OPG method, ρrt(θ) is used for optimization, and the sum of the expected
average reward functions

∑T
t=1 ρrt(θ

∗) is calculated based on the stationary state
distribution dθ∗(s) of the policy parameterized by θ∗. However, the sum of the
expected rewards Rθ∗(T )is calculated by dθ,t(s), which is the state distribution at
time step t following policy π(a|s;θ∗). A similar argument can be obtained for∑T

t=1 ρrt(θt) and RA(T ). These differences affect the first and third terms of the
decomposed regret (3.9).

Below, we bound each of the three terms in Lemma 3.2, Lemma 3.3, and
Lemma 3.4, which are proved in Appendix 3.6.1, Appendix 3.6.2, and Appendix 3.6.3,
respectively.

Lemma 3.2. The difference between the return and the expected average reward
function of the best offline policy parameter satisfies∣∣∣∣∣Rθ∗(T )−

T∑
t=1

ρrt(θ
∗)

∣∣∣∣∣ ≤ 2τ.

The first term has already been analyzed for discrete state and action online
MDPs in Even-Dar et al. (2003, 2009), Neu et al. (2014), and Dick et al. (2014),
and we extended it to continuous state and action spaces in Lemma 3.2.

Lemma 3.3. The expected average reward function satisfies∣∣∣∣∣
T∑
t=1

(ρrt(θ
∗)− ρrt(θt))

∣∣∣∣∣ ≤ √T F 2

2
+
√
TC2N.

Lemma 3.3 is obtained by using the result of Zinkevich (2003).

Lemma 3.4. The difference between the return and the expected average reward
function of π(a|s;θt),∀t = 1, . . . , T given by the OPG algorithm A satisfies∣∣∣∣∣RA(T )−

T∑
t=1

ρrt(θt)

∣∣∣∣∣ ≤ 2τ 2C1C2N
√
T + 2τ.

Lemma 3.4 is similar to Lemma 5.2 in Even-Dar et al. (2009), but our bound
does not depend on the cardinality of state and action spaces.

Combining Lemma 3.2, Lemma 3.3, and Lemma 3.4, we can immediately
obtain Theorem 3.1.
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3.3.3 Regret Bound under Strong Concavity

Next we derive a sharper regret bound for the OPG algorithm under a strong con-
cavity assumption.

Theorem 3.1 shows the theoretical guarantee of the OPG algorithm with the
concave assumption. If the expected reward function is strongly concave, i.e.,

∇2
θρrt ≤ −HIN , (3.10)

where H is a positive constant and IN is the N × N identity matrix, we have
following theorem.

Theorem 3.5. The regret against the best offline policy of the OPG algorithm is
bounded as

LA(T ) ≤ C2
2N

2

2H
(1 + log T ) +

2τ 2C1C2N

H
log T + 4τ,

with step size ηt = 1
Ht

.

In above theorem, C2 = 2C1−C1e−1/τ

1−e−1/τ , where C1 depends on the specific policy
model. We again consider the same decomposition as Eq.(3.9), and the first term
of the regret bound is exactly the same as Lemma 3.2.

The second term is bounded by the following proposition given the strong
concavity assumption (3.10) and step size ηt = 1

Ht
:

Proposition 3.6.
T∑
t=1

(ρrt(θ
∗)− ρrt(θt)) ≤

C2
2N

2

2H
(1 + log T ).

The proof of Proposition 3.6 is given in Appendix 3.6.4, which follow the
same line as Hazan et al. (2007).

From the proof of Lemma 3.4, the bound of the third term with the strong
concavity assumption (3.10) is given by following proposition.

Proposition 3.7.
T∑
t=1

ρrt(θt)−RA(T ) ≤ 2τ 2C1C2N

H
log T + 2τ. (3.11)

The result of Proposition 3.7 is obtained by following the same line as the
proof of Lemma 3.4 with a different step size. Combining Lemma 3.2, Proposi-
tion 3.6, and Proposition 3.7, we can obtain Theorem 3.5.
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3.4 Regret Analysis with Bandit Feedback

In this section, we prove a regret bound for the OPG algorithm in the bandit-
feedback case.

Suppose that there exist ξ > 0 and ε > 0 such that the policy and the state
distribution satisfy

π(a|s;θt) ≥ ξ, ∀s ∈ S,∀a ∈ A, ∀t = 1, . . . , T,

dA,t(s) ≥ ε,∀s ∈ S,∀t = 1, . . . , T.

Note that the above assumptions yield the state and action spaces to be compact,
where the Gaussian policy cannot be used directly.

Then we have the following theorem:

Theorem 3.8. The regret of the OPG algorithm with bandit feedback is

LA(T ) = Rθ∗(T )−RA(T )

≤ 4τ +
F 2

2

√
T + (C3 + C4)N

√
T

+ 2τ 2(C1C3N + C1C4N)
√
T ,

where C3 = C1

ε(1−e−1/τ )
, C4 = C1

ξε
, and C1 depends on the specific policy model as

Assumption 5.

Theorem 3.8 can be proved by extending the proof of Theorem 3.1 as follows.

The same regret decomposition as Eq.(3.9) is still possible in the bandit-
feedback setting. The first term can be bounded in the same way as the full-
information case, i.e., Lemma 3.2 still holds. However, the bounds for the second
and third terms, originally given in Lemma 3.3 and Lemma 3.4, should be modi-
fied as follows:

Lemma 3.9. The expected average reward function given by the online policy
gradient algorithm with bandit feedback satisfies∣∣∣∣∣

T∑
t=1

ρrt(θ
∗)− ρrt(θt)

∣∣∣∣∣ ≤ F 2

2

√
T + (C3 + C4)N

√
T .
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The bound of the second part is still O(
√
T ) , but it is looser than the bound

in the full-information scenario which is caused by the estimated gradient of the
expected average reward function.

Lemma 3.10. The third term of the regret of the online policy gradient algorithm
with bandit feedback is bounded as∣∣∣∣∣RA(T )−

T∑
t=1

ρrt(θt)

∣∣∣∣∣ ≤ 2τ 2(C1C3N + C1C4N)
√
T + 2τ.

Proofs of Lemma 3.9 and Lemma 3.10 are given in Appendix 3.6.7. From
these lemmas, we can immediately obtain Theorem 3.8.

3.5 Experiments

In this section, we illustrate the behavior of the OPG algorithm through experi-
ments.

3.5.1 Target Tracking

The task is to let an agent track an abruptly moving target located in one-dimensional
real space S = R. By abruptly, we mean that the target agent could jump from
point to point. At the current time step, we cannot predict the target positions in
the future. The action space is also one-dimensional real space A = R, and we
can change the position of the agent as s′ = s + a. The reward function is given
by evaluating the distance between the agent and target as

rt(s, a) = e−
1
2

(s−tar(t))2− 1
2
a2 , (3.12)

where tar(t) ∈ [−3, 3] denotes the position of the target at time step t. The
mechanism for moving the target is set as the uniform distribution over the interval
[−3, 3].

We use the Gaussian policy with mean parameter µ = θ · s and standard
deviation parameter σ = 3 in this experiment. From the standard argument (Peters
and Schaal, 2006), the stationary state distribution is the Gaussian distribution
with zero mean parameter and standard deviation parameter σ̃ = σ√

−θ2−2θ
, θ ∈
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(−2, 0). Note that the parameter space is not closed in this experiment. When θ
takes a value less than -1.99 or more than -0.01 during gradient update iterations,
we project it back to -1.99 or -0.01, respectively. Then for all t = 1, . . . , T , the
expected average reward functions are given by

ρrt(θ) =

∫
s∈S
N0,σ̃(s)

∫
a∈A
Nµ,σ(a)e−

1
2

(s−tar(t))2− 1
2
a2dads

=
1

$
exp

(
−tar(t)2($2 − σ̃2 − σ2σ̃2)

2$2

)
,

where $ =
√

1 + σ2 + σ̃2 + σ2σ̃2 + σ̃2θ2. This implies that ρrt(θ) is concave
with respect to the parameter θ, and thus ρrt(θ) satisfies Assumption 7 for all
t = 1, . . . , T . The analysis of concavity is presented in Appendix 3.6.9.

As a baseline method for comparison, we consider the MDP-E algorithm
(Even-Dar et al., 2003, 2009), where the exponential weighted average algorithm
is used as the best expert. Since MDP-E can handle only discrete states and ac-
tions, we discretize the state and action spaces. More specifically, the state space
is discretized as

(−∞,−6], (−6,−6 + c], (−6 + c,−6 + 2c], . . . , (6,+∞),

and the action space is discretized as

−6,−6 + c,−6 + 2c, . . . , 6.

We consider the following 5 setups for c:

c = 12, 6, 2, 1, 0.5, 0.1.

In the experiment, the state distribution and the gradient are estimated by the
policy gradient estimator REINFORCE introduced in Peters and Schaal (2006).
I = 20 independent experiments are run with T = 100 time steps, and the average
return J(T ) is used for evaluating the performance:

J(T ) =
1

I

I∑
i=1

[
T∑
t=1

rt(st, at)

]
.

The results are plotted in Figure 3.1, showing that the OPG algorithm works better
than the MDP-E algorithm with the best discretization resolution. This illustrates
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the advantage of directly handling continuous state and action spaces without dis-
cretization. The MDP-E algorithm performs poorly when the discretization reso-
lution is too small. Since the regret caused by the MDP-E algorithm increases as
the cardinalities of state and action spaces increase. On the other hand, the per-
formance of the MDP-E algorithm is limited when the discretization resolution is
too large. Moreover, it is difficult to design the best discretization method without
the knowledge of the target movement.

Figure 3.2 shows the average rewards and average regrets for full-information
and bandit feedback cases, which substantiate the theoretical results.

Next, we set the state and action spaces as two-dimensional real spaces S =

R2, A = R2. The target position tar(t) is uniformly changing within [−3, 3]2.
The transition function is a linear function s′ = s + a. The reward function is
given by evaluating the Euclidean distance between the agent and target as

rt(s,a) = e−
1
2
‖s−tar(t)‖22−

1
2
‖a‖22 .

For comparison, we discretize the state and action spaces with different resolu-
tions. In Figure 3.3, we show the average returns obtained by the OPG algorithm
and the MDP-E algorithm with different resolutions. This illustrates the OPG al-
gorithm performs better than the MDP-E algorithm with the best discretization
resolution.

3.5.2 Linear-quadratic Regulator

The linear-quadratic regulator (LQR) is a typical system, where the transition
dynamics is linear and the reward function is quadratic. This system is instructive
because we can compute the best offline parameter and the gradient directly (Pe-
ters and Schaal, 2006). Here, an online LQR system is simulated to illustrate the
parameter update trajectory of the OPG algorithm.

Let state and action spaces be one-dimensional real space: S = R, A = R.
The transitions are deterministically performed as

s′ = s+ a.

The reward function is defined as

rt(s, a) = −1

2
Qts

2 − 1

2
Rta

2,
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where Qt ∈ R and Rt ∈ R are chosen from {1, . . . , 10} uniformly at time step
t = 10, 20, 30, . . . , 10000 1. Thus, the reward function is changing abruptly.

We use the Gaussian policy with mean parameter µ = θ · s and standard
deviation parameter σ = 0.1 and σ = 1 in full information and bandit feedback
experiments, respectively. The best offline parameter is given by θ∗ = −0.92, and
the initial parameter for the OPG algorithm is drawn uniformly at random.

From the standard argument (Peters and Schaal, 2006), the expected average
reward function of the above LQR system is given by

ρrt(θ) = −1

2
(Rt + Pt)σ

2,

where Pt is the positive definite solution of the modified Ricatti equation Pt =

Qt +Pt + 2θPt + θ2Pt + θ2Rt. Then the second order derivative of ρrt(θ) is given
by

∂2ρrt(θ)

∂θ2
=
σ2Qt(6θ

2 + 12θ + 8)− 4σ2θ3Rt

2(2θ + θ2)3
.

Given the fact that P is the positive definite solution which yields −2 < θ < 0,
we can obtain ∂2ρrt (θ)

∂θ2
≤ 0. This means that the expected average reward function

of the target LQR system is always concave with respect to the policy parameter.
In the top graph of Figure 3.4, a parameter update trajectory of OPG with full

information in the online LQR problem is plotted by the solid line, and the best
offline parameter is denoted by the dashed line. This shows that the OPG solution
quickly approaches the best offline parameter.

Next, we also include the Gaussian standard deviation σ in the policy parame-
ter, i.e., θ = (µ, σ)>. When σ takes a value less than 0.01 during gradient update
iterations, we project it back to 0.01. A parameter update trajectory is plotted
in the bottom graph of Figure 3.4, showing again that the OPG solution quickly
approaches the best offline parameter value.

In the top graph of Figure 3.5, the solid line shows the trajectory of the OPG
algorithm with bandit feedback in the online LQR system simulation. The result
validates that the OPG solution converges to the best offline parameter with a
slightly slower speed compared with the full information result.

1The reward function is not bounded, which violates Assumption 6. However, it is interesting
to illustrate that the parameter updated by the OPG algorithm still converges to the best offline
parameter.
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The parameter trajectory is shown in the bottom graph of Figure 3.5 when
the standard deviation σ is included in the parameter. The OPG solution still
approaches the best offline mean parameter as we expect.

3.6 Proofs of Theorems

In this section, we present the proofs of all the theorems involved in this chapter.

3.6.1 Proof of Lemma 3.2

The following proposition holds, which can be obtained by recursively using As-
sumption 4:

Proposition 3.11. For any policy parameter θ, the state distribution dθ,t at time t
and stationary state distribution dθ satisfy∫

s∈S
|dθ,t(s)− dθ(s)|ds ≤ 2e−t/τ .

Then the first part of the regret bound could be bounded as∣∣∣∣∣Rθ∗(T )−
T∑
t=1

ρrt(θ
∗)

∣∣∣∣∣ =

∣∣∣∣∣
T∑
t=1

[∫
s∈S

dθ∗,t(s)

∫
a∈A

rt(s,a)π(a|s;θ∗)dsda

−
∫
s∈S

dθ∗(s)

∫
a∈A

rt(s,a)π(a|s;θ∗)dsda

]∣∣∣∣
≤

T∑
t=1

∫
s∈S
|dθ∗,t(s)− dθ∗(s)| ds

≤ 2
T∑
t=1

e−t/τ

≤ 2τ,

where the second inequality can be obtained by Assumption 4.

3.6.2 Proof of Lemma 3.3

The following proposition is a continuous extension of Lemma 6.3 in (Even-Dar
et al., 2009):
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Figure 3.1: Average and standard deviation of returns of the OPG algorithm and
the MDP-E algorithm with different discretization resolution c.
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Figure 3.2: Average rewards and average regrets of the OPG algorithm with full
information and bandit feedback.
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Figure 3.3: Average and standard deviation of returns of the OPG algorithm and
the MDP-E algorithm with different discretization resolution c in 2-
dimensional tracking experiment.
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Figure 3.4: Trajectory of the OPG solution with full information and the best of-
fline parameter.
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Figure 3.5: Trajectory of the OPG solution with bandit feedback and the best of-
fline parameter.
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Proposition 3.12. For two policies with different parameters θ and θ′, an arbi-
trary distribution d over S, and the constant C1 > 0 given in Assumption 5, it
holds that∫

s∈S
d(s)

∫
s′∈S
|p(s′|s;θ)− p(s′|s;θ′)|ds′ds ≤ C1‖θ − θ′‖1,

where

p(s′|s;θ) =

∫
a∈A

π(a|s;θ)p(s′|s,a)da.

Then we have the following proposition, which is proved in Appendix 3.6.5:

Proposition 3.13. For all t = 1, . . . , T , the expected average reward function
ρrt(θ) for two different parameters θ and θ′ satisfies

|ρrt(θ)− ρrt(θ′)| ≤ C2‖θ − θ′‖1.

From Proposition 3.13, we have the following proposition:

Proposition 3.14. Let

θ = [θ(1), . . . , θ(i), . . . , θ(N)],

θ′ = [θ(1), . . . , θ(i)′ , . . . , θ(N)],

and suppose that the expected average reward ρrt(θ) for all t = 1, . . . , T is Lips-
chitz continuous with respect to each dimension θ(i). Then we have

|ρrt(θ)− ρrt(θ′)| ≤ C2|θ(i) − θ(i)′ |,∀i = 1, . . . , N.

Form Proposition 3.14, we have the following proposition:

Proposition 3.15. For all t = 1, . . . , T , the partial derivative of expected average
reward function ρrt(θ) with respect to θ(i) is bounded as∣∣∣∣∂ρrt(θ)

∂θ(i)

∣∣∣∣ ≤ C2,∀i = 1, . . . , N,

and ‖∇θρrt(θ)‖1 ≤ NC2.

From Proposition 3.15, the result of online convex optimization (Zinkevich,
2003) is applicable to the current setup. More specifically we have

T∑
t=1

(ρrt(θ
∗)− ρrt(θt)) ≤

F 2

2

√
T + C2N

√
T ,

which concludes the proof.
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3.6.3 Proof of Lemma 3.4

The following proposition holds, which can be obtained from Assumption 5 and

‖θt − θt+1‖1 ≤ ηt‖∇θρrt(θt)‖1 ≤ C2Nηt.

Proposition 3.16. Consecutive policy parameters θt and θt+1 given by the OPG
algorithm satisfy

∫
a∈A
|π(a|s;θt)− π(a|s;θt+1)|da ≤ C1C2Nηt.

From Proposition 3.12 and Proposition 3.16, we have the following proposi-
tion:

Proposition 3.17. For consecutive policy parameters θt and θt+1 given by the
OPG algorithm and arbitrary transition probability density p(s′|s,a), it holds
that ∫

s∈S
d(s)

∫
s′∈S

∫
a∈A

p(s′|s,a)

× |π(a|s;θt)− π(a|s;θt+1)|dads′ds ≤ C1C2Nηt.

Then the following proposition holds, which is proved in Appendix 3.6.6 fol-
lowing the same line as Lemma 5.1 in Even-Dar et al. (2009):

Proposition 3.18. The state distribution dA,t given by algorithm A and the sta-
tionary state distribution dθt of policy π(a|s;θt) satisfy

∫
s∈S
|dθt(s)− dA,t(s)|ds ≤ 2τ 2ηt−1C1C2N + 2e−t/τ .

Although the original bound given in Even-Dar et al. (2003, 2009) depends on
the cardinality of the action space, it is not the case in the current setup.
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Then the third term of the decomposed regret (3.9) is expressed as∣∣∣∣∣RA(T )−
T∑
t=1

ρrt(θt)

∣∣∣∣∣ =

∣∣∣∣∣
T∑
t=1

∫
s∈S

dA,t(s)

∫
a∈A

rt(s,a)π(a|s;θt)dads

−
T∑
t=1

∫
s∈S

dθt(s)

∫
a∈A

rt(s,a)π(a|s;θt)dads

∣∣∣∣∣
≤

T∑
t=1

∫
s∈S
|dA,t(s)− dπt(s)|ds

≤ 2τ 2C1C2N
T∑
t=1

ηt + 2
T∑
t=1

e−t/τ

≤ 2τ 2C1C2N
√
T + 2τ,

which concludes the proof.

3.6.4 Proof of Proposition 3.6

The proof of Proposition 3.6 can be obtained from Hazan et al. (2007), i.e., by the
Taylor approximation, the expected average reward function can be decomposed
as

ρrt(θ
∗)− ρrt(θt)

= ∇θρrt(θt)
>(θ∗ − θt) +

1

2
(θ∗ − θt)>∇2

θρrt(ξt)(θ
∗ − θt)

≤ ∇θρrt(θt)
>(θ∗ − θt)−

H

2
‖θ∗ − θt‖2, (3.13)

where ξt is some point between θ∗ and θt. The last inequality comes from the
strong concavity assumption (3.10). Given the parameter updating rule,

∇θρrt(θ
∗ − θt) =

1

2ηt

(
(θ∗ − θt)2 − (θ∗ − θt+1)2

)
+ ηt‖∇θρrt(θt)‖2,

summing up all T terms of (3.13) and setting ηt = 1
Ht

yield

T∑
t=1

(ρrt(θ
∗)− ρrt(θt)) ≤

T∑
t=1

(
1

ηt+1

− 1

ηt
−H

)
‖θ∗ − θt‖2 + ‖∇tρrt(θt)‖2

T∑
t=1

ηt

≤ C2
2N

2

2H
(1 + log T ).
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3.6.5 Proof of Proposition 3.13

For two different parameters θ and θ′, we have

|ρrt(θ)− ρrt(θ′)| =
∣∣∣∣∫
s∈S

dθ(s)

∫
a∈A

π(a|s;θ)rt(s,a)dads

−
∫
s∈S

dθ′(s)

∫
a∈A

π(a|s;θ′)rt(s,a)dads

∣∣∣∣
≤
∫
s∈S
|dθ(s)− dθ′(s)|

∫
a∈A

π(a|s;θ)rt(s,a)dads

+

∫
s∈S

dθ′(s)

∫
a∈A
|π(a|s;θ)− π(a|s;θ′)| rt(s,a)dads.

(3.14)

The first equation comes from Eq.(3.3), and the second inequality is obtained from
the triangle inequality. Since Assumption 5 and Assumption 6 imply∫

s∈S
dθ′(s)

∫
a∈A
|π(a|s;θ)− π(a|s;θ′)|rt(s,a)dads ≤ C1‖θ − θ′‖1,

and also ∫
a∈A

π(a|s;θ)rt(s,a)da ≤ 1,

Eq.(3.14) can be written as

|ρrt(θ)− ρrt(θ′)| ≤
∫
s∈S
|dθ(s)− dθ′(s)|ds+ C1‖θ − θ′‖1

=

∫
s∈S

∫
s′∈S
|dθ(s′)p(s|s′;θ)− dθ′(s′)p(s|s′;θ′)|ds′ds

+ C1‖θ − θ′‖1

≤
∫
s∈S

∫
s′∈S
|dθ(s′)p(s|s′;θ)− dθ′(s′)p(s|s′;θ)|ds′ds

+

∫
s∈S

∫
s′∈S

dθ′(s
′)|p(s|s′;θ)− p(s|s′;θ′)|ds′ds

+ C1‖θ − θ′‖1

≤ e−1/τ

∫
s∈S
|dθ(s)− dθ′(s)|ds+ 2C1‖θ − θ′‖1.
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The second equality comes from the definition of the stationary state distribution,
and the third inequality can be obtained from the triangle inequality. The last
inequality follows from Assumption 4 and Proposition 3.12. Thus, we have

|ρrt(θ)− ρrt(θ′)| ≤
2C1 − C1e

−1/τ

1− e−1/τ
‖θ − θ′‖1,

which concludes the proof.

3.6.6 Proof of Proposition 3.18

This proof is following the same line as Lemma 5.1 in Even-Dar et al. (2009).∫
s∈S
|dA,k(s)− dθt(s)|ds

=

∫
s∈S

∫
s′∈S
|dA,k−1(s′)p(s|s′;θk)− dθt(s′)p(s|s′;θt)| ds′ds

≤
∫
s∈S

∫
s′∈S
|dA,k−1(s′)p(s|s′;θt)− dθt(s′)p(s|s′;θt)| ds′ds

+

∫
s∈S

∫
s′∈S
|dA,k−1(s′)p(s|s′;θk)− dA,k−1(s′)p(s|s′;θt)| ds′ds

≤ e−1/τ

∫
s∈S
|dA,k−1(s)− dθt(s)| ds+ 2(t− k)C1C2Nηt−1. (3.15)

The first equation comes from the definition of the stationary state distribution,
and the second inequality can be obtained by the triangle inequality. The third
inequality holds from Assumption 4 and∫

s∈S

∫
s′∈S
|dA,k−1(s′)p(s|s′;θk)− dA,k−1(s′)p(s|s′;θt)| ds

≤ C1‖θt − θk‖1

≤ C1

t−1∑
i=k

ηi‖∇θρi(θi)‖1

≤ 2(t− k)C1C2Nηt−1.

Recursively using Eq.(3.15), we have∫
s∈S
|dA,t(s)− dπt(s)|ds ≤ 2

t∑
k=2

e−(t−k)/τ (t− k)C1C2Nηt−1 + 2e−t/τ

≤ 2τ 2C1C2Nηt−1 + 2e−t/τ ,



3.6 Proofs of Theorems 75

which concludes the proof.

3.6.7 Proofs of Lemma 3.9 and Lemma 3.10

As we show in Section 3.4, an unbiased estimator of reward function is used for
updating the parameter θ, we also show that the corresponding estimated gradient
is unbiased which can be bounded by the following lemma, which is proved in
Appendix 3.6.8.

Lemma 3.19. The estimated gradient∇θρ̂rt(θ) satisfies

‖∇θρ̂rt(θ)‖1 ≤ C3N + C4N.

Following the same line with the proof of Lemma 3.1 in Flaxman et al. (2005),
we firstly define the auxiliary functions for all x ∈ Θ as

%t(x) = ρrt(x) + x>κt,

where κt = ∇θρ̂rt(θt)−∇θρrt(θt). Observed that

∇x%t(θt) = ∇θρ̂rt(θt),

and the unbiased estimation satisfies

Ept(s,a) [%t(θt)|A] = ρrt(θt),

where the above equation follows from the fact Ept(s,a)[κt|A] = 0, and Ept(s,a)[θtκt|A] =

0. Thus, we can obtain

T∑
t=1

(ρrt(θ
∗)− ρrt(θt)) ≤

F 2

2

√
T + (C3 + C4)N

√
T ,

which concludes the proof of Lemma 3.9 by using the result of Lemma 3.19.
Similarly, using Lemma 3.19 in the proof of Lemma 3.4, we obtain Lemma 3.10.
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3.6.8 Proof of Lemma 3.19

The estimated gradient is expressed as

∇θρ̂rt(θt) =

∫
s∈S

∫
a∈A

dθt(s)π(a|s;θt)r̂t(s,a)

× (∇θ ln dθt(s) +∇θ lnπ(a|s;θt))dsda

=
∇θdθt(st)
dA,t(st)

rt(st,at)

+
dθt(st)

dA,t(st)
ln∇θπ(a|s;θt)rt(st,at).

Consider the stationary distribution as a function of parameter θ for all s ∈ S,
Then, from Proposition 3.13, the bound for the gradient of the stationary distribu-
tion is given by

|∇θdθt(s)| ≤ C1N

1− e−1/τ
, ∀s ∈ S,∀t = 1, . . . , T.

Similarly, from Assumption 5, the bound for the gradient of policy π is given by

|∇θ lnπ(a|s;θt)| ≤
C1N

ξ
,∀s ∈ S,∀a ∈ A,∀t = 1, . . . , T.

Then we have

‖∇θρ̂rt(θt)‖1 ≤
C1N

ε(1− e−1/τ )
+
C1N

εξ
,∀t = 1, . . . , T.

3.6.9 Concavity Analysis for Target Tracking

The reward function in the target tracking experiment is defined as

rt(s, a) = e−
1
2

(s−tar(t))2− 1
2
a2 ,∀t = 1, . . . , T.

Then for all t = 1, . . . , T , the expected average reward function are given by

ρrt(θ) =

∫
s∈S
N0,σ̃(s)

∫
a∈A
Nµ,σ(a)e−

1
2

(s−tar(t))2− 1
2
a2dads

=
1

$
exp

(
−tar(t)2($2 − σ̃2 − σ2σ̃2)

2$2

)
,
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where $ =
√

1 + σ2 + σ̃2 + σ2σ̃2 + σ̃2θ2 and σ̃ = σ√
−θ2−2θ

. For verifying the
concavity of ρrt(θ), we obtain the derivative of ρrt(θ) with respect to θ by plugging
in σ = 3 as

∂ρrt(θ)

∂θ
=

√
−θ2 − 2θ

−θ2 − 20θ + 90
exp

(
−t

2

2
· −θ2 − 20θ

−θ2 − 20θ + 90

)
×
[
−tar(t)2 −90(θ + 10)

(−θ2 − 20θ + 90)2
− −9θ2 + 90θ + 90

(−θ2 − 20θ + 90)(−θ2 − 2θ)

]
.

Observed that ∂ρrt (θ)

∂θ
is monotonically non-increasing as shown in Figure 3.6.

Thus, the defined expected average reward functions ρrt(θ),∀t = 1, . . . , T are
concave with respect to the parameter θ.

3.7 Summary

In this chapter, we proposed an online policy gradient method for continuous state
and action online MDPs, and showed that the regret of the proposed method is
O(
√
T ) under a certain concavity assumption on the expected average reward

function. A notable fact is that the regret bound does not depend on the cardi-
nality of state and action spaces, which makes the proposed algorithm suitable in
handling continuous states and actions. We further extended our method to the
bandit-feedback scenario, and showed that the regret of the extended method is
still O(

√
T ). Furthermore, we also established the O(log T ) regret bound under

a strong concavity assumption for the full information setup. Through experi-
ments, we illustrated that directly handling continuous state and action spaces by
the proposed method is more advantageous than discretizing them and applying
an existing method.
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Figure 3.6: The derivative of ρrt(θ) with respect to θ.



Chapter 4

Online MDPs with Policy Iteration

The online Markov decision process (MDP) is a generalization of the classical
Markov decision process that incorporates changing reward functions. In this
chapter, we propose practical online MDP algorithms with policy iteration algo-
rithm by parameterizing the value function. We further theoretically establish a
sublinear regret bound. A notable advantage of the proposed algorithm is that it
can be easily combined with function approximation, and thus large and possi-
bly continuous state spaces can be efficiently handled. Through experiments, we
demonstrate the usefulness of the proposed algorithm.

4.1 Introduction

In this section, we present involved preliminaries of the online MDP problem. As
we mentioned in previous chapters, the regret with respect to the best offline time
independent policy is defined as:

LA(T ) = Rπ∗(T )−RA(T ),

where Rπ∗(T ) is the return of the best offline time independent policy π∗:

Rπ∗(T ) = Eπ∗
[

T∑
t=1

rt(st,at)

]
= sup

π∈Π
Eπ

[
T∑
t=1

rt(st,at)

]
,

where Eπ[·] denotes the expectation over the state-action joint distribution given
policy π. An important fact is that the regret we consider here is different from

79
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previous literature (Even-Dar et al., 2003, 2009; Zimin and Neu, 2013; Dick et al.,
2014): we compare the performance of algorithmA against the best offline policy
within a specific policy set Π. Namely instead of the best deterministic greedy pol-
icy, we consider a set of “efficient” policies, e.g., Gibbs policies with all possible
parameters.

We expect that the regret LA(T ) is sublinear with respect to T , which means
that the regret tends to zero as T tends to infinity and thus algorithm A performs
as well as the best offline policy π∗ asymptotically.

Next, we introduce some necessary notions for discussing online MDP prob-
lems. Recall the evaluation measures introduced in Chapter 1, there are different
types of measures defined for different MDP problems. In this chapter, we define
the value function by using the average evaluations as

Vπr (s) = Eπ

[
∞∑
i=1

(r(si,ai)− ρr(π))|s1 = s

]
,

For any arbitrary reward function r(s,a) and transition probability p(s′|s,a),
there exist at least one optimal policy π+ ∈ Π such that

Vπ+

r (s) ≥ Vπr (s),∀π ∈ Π, s ∈ S,

ρr(π
+) ≥ ρr(π),∀π ∈ Π.

Similarly, the state-action function is defined as

Qπ
r (s,a) = Eπ

[
∞∑
i=1

(r(si,ai)− ρr(π))|s1 = s,a1 = a

]
.

Since the optimal value function leads to the optimal policy, MDP is often solved
by deriving the optimal value function (Sutton and Barto, 1998). So far, var-
ious efficient methods for approximating the optimal value function have been
proposed. However, these algorithms were not proved to converge to the value
function corresponding to the optimal deterministic policy. For this reason, in this
paper we only consider the stochastic policy, since the convergence guarantee is
provided (Tsitsiklis and Roy, 1999).
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4.2 Online MDPs with Policy Iteration

In Chapter 3, we showed that the OPG algorithm achieved a sublinear regret under
the concavity assumption by parameterizing the policy space. However, this con-
cavity assumption is not always hold in some real problems. In this section, we
introduce another proposed method for online MDPs which intends to parameter-
ize the value function space. The key idea of the proposed algorithm is motivated
by the Lazy FPL algorithm by Yu et al. (2009), which performs linear program-
ming to obtain the ‘leader’ policy. As Yu et al. (2009) pointed out, solving linear
programming may not be appropriate for problems with large (continuous) state
space. For this reason, we employ a policy iteration type method together with a
stochastic policy in our proposed method.

4.2.1 Proposed Algorithm

Firstly, we define the policy improvement operator Γ : π(a|s) = Γ(r(s,a), V (s)),
where r(s,a) is an arbitrary reward function, V (s) is an arbitrary value function.
Below we use Γ(r, V ) instead of Γ(r(s,a), V (s)) for notational simplicity. Now
we introduce two assumptions on the defined operator Γ.

Assumption 8. For an arbitrary reward function r and two arbitrary value func-
tions V1(s) and V2(s), the policies π1 = Γ(r, V1) and π2 = Γ(r, V2) satisfy

‖π1(s, ·)− π2(s, ·)‖1 ≤ ξ‖V1(·)− V2(·)‖∞,

where ξ > 0 is the Lipschitz constant depending on the specific policy model. ‖·‖1

denotes the L1 norm, ‖ · ‖∞ denotes the infinity norm in this chapter.

Assumption 9. For an arbitrary value function V (s) and two arbitrary reward
functions r(s,a) and r′(s,a), the policies π = Γ(r, V ) and π′ = Γ(r′, V ) satisfy

‖π(s, ·)− π′(s, ·)‖1 ≤ξ‖r(s, ·)− r′(s, ·)‖∞,

The Gibbs policy is a popular model which was demonstrated to work well:

π(a|s) =
exp 1

κ

(
r(s,a) +

∑
s′∈S p(s

′|s,a)V (s′)
)
)∑

a′∈A exp 1
κ

(
r(s,a′) +

∑
s′∈S p(s

′|s,a′)V (s′)
) ,
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where κ is the exploration parameter. We can show that the Gibbs policy satisfies
Assumption 8 and Assumption 9 (the proofs are provided in Appendix 4.6.1).

Throughout this chapter, we only consider stochastic policies that satisfy the
above two assumptions. Let Π be the set of policies generated by the operator
Γ. Then our proposed online MDP with policy iteration (OMDP-PI) algorithm is
given as follows:

• Initialize the value function V0(s) = 0, ∀s ∈ S.

• for t = 1, . . . ,∞

1. Observe the current state st = s.

2. Improve the policy as πt = Γ(r̂t−1, Vt−1), where

r̂t−1(s,a) =
1

t− 1

t−1∑
k=1

rk(s,a).

3. Take action at = a by following πt.

4. The reward function rt(s,a) is revealed.

5. Update the value function according to

Vt(s) = (1− γt)Vt−1(s) + γtVπtrt (s), (4.1)

where the step size is γt = 1/t.

It is well known (Sutton and Barto, 1998) that the value function satisfies

Vπr (s) = Eπ

[
r(s,a)− ρr(π) +

∑
s′∈S

p(s′|s,a)Vπr (s′)

]
.

The above equation can be rewritten in matrix form as

Vπr = R(π)− e|S|ρr(π) + P πVπr , (4.2)

where Vπr is the |S|-dimensional column vector whose sth element is Vπr (s). R(π)

is the |S|-dimensional column vector whose sth element is
∑
a∈A π(a|s)r(s,a).

P π is the transition matrix induced by the policy π, whose ss′th element is pπ(s|s′) =
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∑
a∈A π(a|s)p(s′|s,a). e|S| is the |S|-dimensional column vector with all ones.

It is well known (Sutton and Barto, 1998) that the above equation has no unique
solution. Here we introduce the following constraint on the value function:

Es∼dπ(s)[Vπr (s)] = Es∼dπ(s),a∼π

[
∞∑
i=1

(r(s,a)− ρr(π))

]
= 0.

By this constraint, the solution of Equ.(4.2) becomes unique and satisfies

Vπr = R(π)− e|S|ρr(π) + P πVπr − e|S|d>π Vπr , (4.3)

where dπ is the |S|-dimensional column vector whose sth element is dπ(s).
Then the update rule (4.1) can be expressed in closed form as

Vt = (1− γt)Vt−1 + γt(I|S| − P πt + e|S|d
>
πt)
−1(Rt(πt)− e|S|ρrt(πt)).

Since the stationary distribution can be obtain by the eigenvector corresponding
to the unit eigenvalue, we can calculate ρrt(πt) directly. Then, Vt(s) can be ob-
tained directly without solving an optimization problem when the state space is
not large (continuous). In the following sections, we will introduce an approxi-
mation method to handle large (continuous) state space problems.

4.2.2 Regret Analysis

In this section, we provide a regret analysis for the proposed OMDP-PI algorithm.
Firstly, we introduce several essential assumptions involved in the proof. Similarly
to the previous works (Even-Dar et al., 2003, 2009; Yu et al., 2009; Neu et al.,
2010b, 2014; Ma et al., 2014), we assume the following conditions.

Assumption 10. For all π ∈ Π, there exist a positive constant τ such that two
arbitrary state distributions d(s) and d′(s) satisfy∑

s∈S

∑
s′∈S

|d(s)− d′(s)|pπ(s′|s) ≤ e−1/τ
∑
s∈S

|d(s)− d′(s)|.

Assumption 11. The reward functions satisfy

rt(s,a) ∈ [0, 1],∀s ∈ S,∀a ∈ A, ∀t = 1, . . . , T.



84 Chapter 4. Online MDPs with Policy Iteration

Under these assumptions, the regret of the OMDP-PI algorithm for a policy
set Π is bounded as follows:

Theorem 4.1. After T time steps, the regret against the best offline time indepen-
dent policy of the OMDP-PI algorithm is bounded as

LOMDP−PI(T ) ≤ 2− e−1/τ

1− e−1/τ
CξTCv +

(
6τξ(2− e−1/τ )

1− e−1/τ
+ 2τ 3

)
lnT

+

(
6τξ(2− e−1/τ )

1− e−1/τ
+ 2τ 3 + 2τ 3eτ+2 + 4τ

)
,

where C = 6τ(2 − Cv + 1
Cv

+ 1−Cv
1+Cv

), Cv = ξCπ, and Cπ is a positive constant
such that for all π1, π2 ∈ Π,

‖Vπ1r − Vπ2r ‖∞ ≤ Cπ‖π1 − π2‖1.

The existence of Cπ is proved in Appendix 4.6.5.

Remark 4.2. The regret bound in Theorem 4.1 is sublinear with respect to T when
Cv < 1. However, the quality of the policy is limited when Cv is small. Since the
smaller the constant Cv is, the poorer the performance of the best offline policy
is. In an extreme case, where all the policies in the set Π perform equally, when
Cv = 0.

To prove the claimed result in Theorem 4.1, we decompose the regret into three
parts in the same way as previous works (Even-Dar et al., 2003, 2009; Abbasi-
Yadkori et al., 2013; Ma et al., 2014):

LA(T ) =

(
Eπ∗

[
T∑
t=1

rt(st,at)

]
−

T∑
t=1

ρrt(π
∗)

)
+

(
T∑
t=1

ρrt(π
∗)−

T∑
t=1

ρrt(πt)

)

+

(
T∑
t=1

ρrt(πt)− Eπt

[
T∑
t=1

rt(st,at)

])
.

The first term has been analyzed in previous works (Even-Dar et al., 2003, 2009;
Ma et al., 2014), which is bounded as

Eπ∗
[

T∑
t=1

rt(st,at)

]
−

T∑
t=1

ρrt(π
∗) ≤ 2τ.

Below, we bound the second and the third terms in Lemma 4.3 and Lemma 4.4
which are proved in Appendix 4.6.2 and Appendix 4.6.3.
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Lemma 4.3. After T time steps, the policy sequence π1, . . . , πT given by OMDP-
PI and the best offline policy π∗ ∈ Π satisfy

T∑
t=1

ρrt(π
∗)−

T∑
t=1

ρrt(πt) ≤
2− e−1/τ

1− e−1/τ

(
CξTCv + 6τξ lnT + 6τξ

)
,

where C = 6τ(2− Cv + 1
Cv

+ 1−Cv
1+Cv

).

Lemma 4.4. After T time steps, the policy sequence π1, . . . , πT given by OMDP-
PI satisfies

T∑
t=1

ρrt(πt)− Eπt

[
T∑
t=1

rt(st,at)

]
≤ 2τ 3 lnT + 2τ 3 + 2τ 3e(τ+2) + 2τ.

Summarizing these bounds, we can obtain Theorem 4.1.

4.2.3 OMDP-PI Algorithm with Approximation

When considering large (continuous) state space in online MDP problems, it is
essential to apply a function approximation technique. Tsitsiklis and Roy (1999)
introduced the linear function approximation of the value function for stochastic
policies. A significant benefit of the linear approximation is that the convergence
guarantee is provided (Tsitsiklis and Roy, 1999). Below we present their theoret-
ical results for discrete (possibly continuous) state space.

By following the same idea as Tsitsiklis and Roy (1999), we use the linear
approximation of the value function:

V̂(s) = θ>φ(s),

where θ ∈ Θ is the approximation parameter, and Θ ⊂ RK is the parameter
space, φ(s) is the basis function. At each time step t, the value function Vπtrt (s) is
approximated as follows:

• for i = 1, 2, . . . until convergence

1. Observe the state si.

2. Take action ai following πt.
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3. Observe the next state si+1 and the reward rt(si,ai)

4. Update the approximation parameter as

θi+1 = θi + αt(rt(si,ai)− ρ̂πtrt (i) + θ>i φ(si+1)− θ>i φ(si))

and

ρ̂πtrt (i+ 1) = (1− αt)ρ̂πtrt (i) + αtrt(si,ai),

where the step size αt satisfies

∞∑
t=1

αt =∞ and
∞∑
t=1

α2
t <∞.

The approximation parameter was proved to converge to the unique solution of
the following equation (Tsitsiklis and Roy, 1999):

P(Rt(πt)− e|S|ρrt(πt) + P πtθ>φ) = θ>φ, (4.4)

whereRt(πt) is the |S|-dimensional column vector whose sth element is rt(s, πt) =∑
a∈A πt(a|s)rt(s,a). P is the projection operator such that for all V ∈ R|S|,

P(V ) = argminV̄ ∈{θ>φ|θ∈RK} ‖V − V̄ ‖Dπt ,

where Dπt is the diagonal matrix with the stationary distribution on the diagonal.
It is clear that P is the projection from the |S|-dimensional real space to the space
spanned by the basis function. The approximation sequence ρ̂πtrt (1), ρ̂πtrt (2), . . .

satisfies

lim
i→∞

ρ̂πtrt (i)→ ρrt(πt), with probability 1.

Furthermore, by using Theorem 3 in Tsitsiklis and Roy (1999), the approximation
error is bounded as

‖(I|S|−e|S|d>πt)θ
∗>
t φ−Vπtrt ‖Dπt ≤

1√
1− e−2/τ

inf
θ∈RK

‖(I|S|−e|S|d>πt)θ
>φ−Vπtrt ‖Dπt ,

where θ∗t is the unique solution to Eq.(4.4) at time step t. We observe that the
approximation error is zero when the linear approximation model is capable of
exactly recovering the true value function.
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4.3 Online MDPs with Stochastic Iteration

In this section, we introduce a more general framework of our proposed method
for online MDPs. More specifically, we extend our algorithm to use stochastic it-
eration (Bertsekas and Tsitsiklis, 1996) for policy evaluation together with policy
improvement to solve online MDPs.

A general form of the stochastic iteration algorithm (Szita et al., 2002; Csáji
and Monostori, 2008) can be expressed as

Vt(s) = (1− γt(s))Vt−1(s) + γt(s) ((HtVt−1)(s) + wt(s)) , (4.5)

where Vt ∈ R|S|, Ht : R|S| → R|S|,∀t = 1, . . . , T is an operator on value func-
tions, γt is the step size, and wt(s) is a noise term. Similarly to the Eq.(4.5), we
define the update rule as

Vt(s) = (1− γt(s))Vt−1(s) + γt(s)((Hπt
t Vt−1)(s) + wt(s)), (4.6)

where πt = Γ(r̂t−1, Vt−1) satisfies Assumption 8 and Assumption 9. Note that
the update rule (4.6) is different from standard stochastic iteration (4.5), where
the operator Ht is replaced by the controlled operator Hπ

t which the OMDP-PI
algorithm uses: Hπt

t Vt−1(s) = Vπtrt (s). Additionally, we require the following
assumptions.

Assumption 12. The controlled operator Hπ
t is a contraction mapping with re-

spect to the value function. This means that, for two arbitrary value functions V
and V ′ and two policies π = Γ(r, V ), π′ = Γ(r, V ′), there exist a no negative
constant βt < 1 such that

‖Hπ
t V −Hπ

t V
′‖ ≤ βt‖V − V ′‖,

and there exist a fixed function V ∗t satisfies

HtV
∗
t = V ∗t .

Assumption 13. For all t = 1, . . . , T , the noisy terms wt(s) satisfy

E[wt(s)] = 0 and E[w2
t (s)] < Cw <∞,

where Cw is a positive constant.
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Assumption 14. The step size γt satisfies

∞∑
t=1

γt =∞ and
∞∑
t=1

γ2
t <∞.

Assumption 15. The value functions sequence V1(s), . . . , VT (s) generated by
Eq.(4.6) satisfies

lim
T→∞

‖V ∗T −max
π∈Π
Vπr̂T ‖∞ = 0.

Then we have the following theorem:

Theorem 4.5. If Assumptions 5-8 hold, the value function sequence V1(s), . . . , VT (s)

generated by Eq.(4.6) satisfies

lim
T→∞

LA(T ) = 0.

Proof. By using Theorem 20 in Csáji and Monostori (2008), we have

lim
T→∞

‖VT − Vπ
∗

r̂T
‖∞ = 0,

where π∗ = argmaxπ∈Π ρr̂T (π) is the best offline policy. Since πT+1 = Γ(r̂T , VT )

and πT , we obtain

lim
T→∞

‖πT − π∗‖1 ≤ lim
T→∞

(‖πT+1 − π∗‖1 + ‖πT+1 − πT‖1)

≤ lim
T→∞

(ξ‖VT − Vπ
∗

r̂T
‖∞ + ‖πT+1 − πT‖1)

≤ lim
T→∞

(ξ‖VT − Vpi
∗

r̂T
‖∞ + ξ‖r̂T+1 − r̂T‖∞ + ξ‖VT − VT−1‖∞)

= 0.

In the above derivation we used limT→∞ ‖VT − VT−1‖∞ = 0, which can be ob-
tained by the update rule (4.6). The above result shows that the policies generated
by the value sequence converges to the best offline policy as T goes to infinity.
Hence, the claimed result hold by following the same line as the proof of Theo-
rem 4.1.

Many popular reinforcement learning algorithms based on value functions
such as the temporal difference (TD) learning algorithm (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998; Sutton, 1988) and the SARSA algorithm (Bertsekas
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and Tsitsiklis, 1996; Sutton and Barto, 1998) can be regarded as stochastic iter-
ation. Theorem 4.5 shows that any stochastic iteration method that satisfies As-
sumptions 5-8 could be used to derive an online MDPs algorithm with sublinear
regret.

4.4 Experiments

In this section, we experimentally illustrate the behavior of the proposed online
algorithm.

The goal of the grid world problem is to let an agent walk in the grid envi-
ronment from the start block to the destination block. We conduct experiments on
the grid world based on the Inverse Reinforcement Learning (IRL) toolkit1(Levine
et al., 2011).

First of all, we construct a typical grid world environment with 16× 16 states
and 2 actions in each state, which correspond to moving east and north. Each
action has a 30% chance of moving in the other direction. The 256 states are
further joined into 16 super-grids, each of which consists of 4 × 4 states with the
same reward.

In each episode, the agent tries to find a trajectory from the south-west cor-
ner to the north-east corner, with the highest cumulative rewards. In the north or
east border states, the agent can only move east or north. Different from the stan-
dard grid world problem, we set T = 100000 and randomly change the rewards
at episodes t = 1, 5001, 10001, ..., 95001. The proposed algorithm and the best
offline algorithm (obtained using the standard MDP solver included in the IRL
toolkit) are run on the grid world.

We show the trajectories found by the offline policy and the proposed OMDP-
PI algorithm at episodes t = 25000, 50000, 75000, 100000 in Figure 4.1, Fig-
ure 4.2, Figure 4.3, and Figure 4.4, respectively. The darker the state is, the lower
average reward it has. The direction of triangles shows the obtained policies. The
states with red triangles indicate trajectories of the agent. Figure 4.5 shows the
average regret and cumulative reward as functions of the number of episodes.

1http://graphics.stanford.edu/projects/gpirl
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(a) OMDP-PI algorithm, t=25000

(b) Best offline policy, t=25000

Figure 4.1: Experiments on grid worlds (t=25000).
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(a) OMDP-PI algorithm, t=50000

(b) Best offline policy, t=50000

Figure 4.2: Experiments on grid worlds (t=50000).
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(a) OMDP-PI algorithm, t=75000

(b) Best offline policy, t=75000

Figure 4.3: Experiments on grid worlds (t=75000).
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(a) OMDP-PI algorithm, t=100000

(b) Best offline policy, t=100000

Figure 4.4: Experiments on grid worlds (t=100000).
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Figure 4.5: Regrets and rewards.

The results in Figure 4.5 show that the regret of the OMDP-PI algorithms
vanishes, substantiating that our theoretical analysis is valid.

4.5 Comparison with Previous Work

In this section, we compare the proposed OMDP-PI algorithm with previous work.

• Expert algorithm based methods (Even-Dar et al., 2003, 2009; Neu et al.,
2010a, 2014): The basic idea of expert algorithm based methods is to put an
expert algorithm in every state. By taking a close look at these algorithms,
the idea does not take advantage of the state structure of the MDP problem.
The OMDP-PI algorithm can be easily combined with function approxima-
tion. Since it is popular to simplify the large state space problem by using
the linear span of the state features, the OMDP-PI algorithm is natural to
handle the large state space online MDPs.



4.6 Proofs of Theorems 95

• Online linear optimization based methods (Zimin and Neu, 2013; Dick et al.,
2014): By introducing the stationary occupancy measures over state-action
pairs, the online MDP problems can be solved as the online linear optimiza-
tion problems. The O(

√
T ) regret bounds are proved for fixed time hori-

zon online MDPs. More specifically, the step size parameter is optimized
by using the length of the time horizon T . Moreover, the stationary occu-
pancy measures are defined over finite state and action spaces, and thus it
is not clear that whether the state-action probability density function could
be learned by using their propose methods without parametrization. The
OMDP-PI algorithm with function approximation parameterized the state-
action density through the linear model of the value function.

• Linear programming based method (Yu et al., 2009): Our OMDP-PI is moti-
vated by the Lazy-FPL algorithm, which solves a linear programming prob-
lem at the end of each phase. Instead of obtaining the best policy by the
linear programming, the OMDP-PI algorithm obtains the value function of
the current policy which is much more efficient than the linear program-
ming. As we showed in the update rule, the policy evaluation could be
performed in O(|S|2.3728639 + |S|2|A|) where the matrix inversion could be
solved in O(|S|2.3728639) (Le Gall, 2014).

4.6 Proofs of Theorems

In this section, we present the proofs of all the theorems involved in this chapter.

4.6.1 Proof of Gibbs policy

Proof. Define ν(s,a′, s′) = r(s,a′)+
∑
s′∈S p(s

′|s,a′)V (s′) and ∆ν(s,a′, s′) =∑
s′∈S p(s

′|s,a′)(V ′(s′)− V (s′)), the KL divergence of two Gibbs policies π, π′
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generated by two different value function V and V ′ is

D(π(·|s) ‖ π′(·|s))

= Eπ

[∑
s′∈S

1

κ
p(s′|s,a) (V (s′)− V ′(s′))

]

+ log

∑
a′∈A exp 1

κ

(
r(s,a′) +

∑
s′∈S p(s

′|s,a′)V ′(s′)
)∑

a′∈A exp 1
κ

(
r(s,a′) +

∑
s′∈S p(s

′|s,a′)V (s′)
)

= Eπ

[
1

κ

∑
s′∈S

p(s′|s,a) (V (s′)− V ′(s′))

]

+ log

∑
a′∈A exp 1

κ
(ν(s,a′, s′) + ∆ν(s,a′, s′))∑

a′∈A exp 1
κ
(r(s,a′) +

∑
s′∈S p(s

′|s,a′)V (s′))

= Eπ

[
1

κ

∑
s′∈S

p(s′|s,a) (V (s′)− V ′(s′))

]

+ log

∑
a′∈A exp 1

κ
(ν(s,a′, s′)) exp 1

κ
∆ν(s,a′, s′)∑

a′∈A exp 1
κ

(
r(s,a′) +

∑
s′∈S p(s

′|s,a′)V (s′)
)

= Eπ

[
1

κ

∑
s′∈S

p(s′|s,a) (V (s′)− V ′(s′))

]

+ logEπ

[
1

κ

∑
s′∈S

p(s′|s,a) (V ′(s′)− V (s′))

]

≤
‖ 1
κ

∑
s′∈S p(s

′|s,a) (V (s′)− V ′(s′)) ‖2
∞

4
.

From the Pinsker’s inequality, there is

‖π(·|s)− π′(·|s)‖1 ≤
‖V (s)− V ′(s)‖∞√

2κ
,
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Similarly, the KL divergence of two Gibbs policies π, π′ generated by two differ-
ent reward function r(s,a) and r′(s,a) is

D(π(·|s)||π′(·|s))

= Eπ
[

1

k
(r(s, ·)− r′(s, ·))

]
+ log

∑
a′∈A exp 1

κ
(r′(s,a′) +

∑
s′∈S p(s

′|s,a′)V (s′))∑
a′∈A exp 1

κ
(r(s,a′) +

∑
s′∈S p(s

′|s,a′)V (s′))

= Eπ
[

1

k
(r(s, ·)− r′(s, ·))

]
+ log

∑
a′∈A exp 1

κ
(r(s,a′) +

∑
s′∈S p(s

′|s,a′)V (s′) + r′(s,a′)− r(s,a′))∑
a′∈A exp 1

κ
(r(s,a′) +

∑
s′∈S p(s

′|s,a′)V (s′))

= Eπ
[

1

κ
(r(s, ·)− r′(s, ·))

]
+ logEπ

[
1

κ
(r′(s, ·)− r(s, ·))

]
≤
‖ 1
κ
(r(s, ·)− r′(s, ·))‖2

∞

4
.

From the Pinsker’s inequality, we can conclude the proof as

‖π(·|s)− π′(·|s)‖1 ≤
‖r(s, ·)− r′(s, ·)‖∞√

2κ
.

which concludes the proof.

4.6.2 Proof of Lemma 4.3

Proposition 4.6. The value functions sequence V1(s), . . . , VT (s) generated by the
Equ(4.1) satisfies

‖Vπ
∗
t

r̂t
(·)− Vt(·)‖∞ ≤ CCv(t+ 1)Cv−1,

where C = 6τ(2− Cv + 1
Cv

+ 1−Cv
1+Cv

), and π∗t = argmaxπ∈Π ρr̂t(π).

By Proposition 3 in Ma et al. (2014) and Proposition 4.1 in Yu et al. (2009),
we obtain the following result

T∑
t=1

(ρrt(π
∗)− ρrt(πt)) ≤

T∑
t=1

(ρrt(π
∗
t )− ρrt(πt)) ≤

T∑
t=1

2− e−1/τ

1− e−1/τ
‖π∗t − πt‖1
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The result in Proposition 4.6 leads the following inequalities

T∑
t=1

(ρrt(π
∗)− ρrt(πt))

≤
T∑
t=1

2− e−1/τ

1− e−1/τ
(‖π∗t−1 − πt‖1 + ‖π∗t − π∗t−1‖1)

≤
T∑
t=1

2− e−1/τ

1− e−1/τ
ξ(‖Vπ

∗
t−1

r̂t−1
− Vt−1‖∞ +

4τ + 2

t
)

≤ 2− e−1/τ

1− e−1/τ

(
Cξ

Cv
TCv + 6τξ lnT + 6τξ

)
.

4.6.3 Proof of Lemma 4.4

The proof is following the same line as previous works(Even-Dar et al., 2003,
2009; Ma et al., 2014), we rewrite the proof with our notations. By the definition
of the expected average reward function, we have

T∑
t=1

ρrt(πt)− Eπt

[
T∑
t−1

rt(st,at)

]

=
T∑
t=1

∑
s∈S

∑
a∈A

(dπt(s)πt(a|s)− dA,t(s)πt(a|s)) rt(s,a)

≤
T∑
t=1

∑
s∈S

|dπt(s)− dA,t(s)|,

where dA,t(s) is the state distribution at time step t by following the policy se-
quence π1, . . . , πt generated by the OMDP-PI algorithm. The last line can be
obtain by rt(s,a) ∈ [0, 1],∀t = 1, . . . , T .

For all k = 2, . . . , t, we have following results

‖dA,k − dπt‖1

= ‖dA,k−1P
πk − dπt−1P

πt‖1

≤ ‖dA,k−1P
πk − dA,k−1P

πt‖1 + ‖dA,k−1P
πt − dπt−1P

πt‖1

≤ (ln (t− 1)− ln (k − 1)) + e−1/τ‖dA,k−1 − dπt−1‖1,
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Recurring the above result, we have

‖dA,t − dπt‖1 ≤
t∑

k=2

(ln (t− 1)− ln (k − 1))e−(t−k)/τ + e−t/τ‖d1 − dπt‖1

≤ (1 + τ)

(
τ 2

t− 1
+ τe−(t−τ−2)/τ

)
+ 2e−t/τ ,

where the last inequality follows by
t∑

k=2

(ln (t− 1)− ln (k − 1))e−(t−k)/τ

=

∫ t

2

(ln (t− 1)− ln (k − 1))e−(t−k)/τdk + ln (t− 1)e−(t−2)/τ

= τ

∫ t

2

(ln (t− 1)− ln (k − 1))
de−(t−k)/τ

dk
dk + ln (t− 1)e−(t−2)/τ

≤ τ

∫ t

2

e−(t−k)/τ

k − 1
dk = τ 2

∫ t

2

1

k − 1

de−(t−k)/τ

dk
dk

≤ τ 2

t− 1
+ τ 2

∫ t

2

e−(t−k)/τ

(k − 1)2
dk

=
τ 2

t− 1
+ τ 2

∫ t

τ+2

e−(t−k)/τ

(k − 1)2
dk +

∫ τ+2

2

e−(t−k)/τ

(k − 1)2
dk

≤ τ 2

t− 1
+

τ 2

τ + 1

∫ t

2

e−(t−k)/τ

k − 1
dk +

∫ τ+2

2

e−(t−k)/τ

(k − 1)2
dk.

Hence, we have∫ t

2

e−(t−k)/τ

k − 1
dk ≤

(
1 +

1

τ

)(
τ 2

t− 1
+ τe−(t−τ−2)/τ

)
.

The claimed result in Lemma 4.4 can be obtained as
T∑
t=1

‖dA,t − dπt‖1 ≤ 2τ 3 lnT + 2τ 3 + 2τ 3e(τ+2) + 2τ.

4.6.4 Proof of Proposition 4.6

Proposition 4.7. For arbitrary reward function r(s,a), the corresponding value
functions induced by two arbitrary policy π1 and π2 satisfy

‖Vπ1r − Vπ2r ‖∞ ≤ Cπ‖π1 − π2‖1.

where Cπ is a positive constant.
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Let us define an auxiliary sequence of functions Vπ
∗
t

r̂t
(s), t = 1, . . . , T which

is defined as

Vπ
∗
t

r̂t
(s) = Eπ∗t

[
∞∑
i=1

(r̂t(s,a)− ρr̂t(π∗t ))

]
.

In above definition, π∗t is the optimal policy which satisfies

π∗t = argmaxπ∈Π ρr̂t(π),

and for all s ∈ S, there is

Vπ
∗
t

r̂t
(s) ≥ Vπr̂t(s),∀π ∈ Π.

It is simple to verify that the value function is linear with respect to the reward
function, i.e., Vπr̂t(s) = 1

t

∑t
k=1 Vπrt(s). Hence, we can rewrite the sequence as

Vπ
∗
t+1

r̂t+1
(s) = Vπ

∗
t

r̂t
(s) +

1

t+ 1

(
t+1∑
k=1

Vπ
∗
t+1

rk (s)− t+ 1

t

t∑
k=1

Vπ∗trk (s)

)

= Vπ
∗
t

r̂t
(s) +

1

t+ 1
Vπ
∗
t+1

rt+1 (s)− 1

t(t+ 1)

t∑
k=1

Vπ∗trk (s)

+
1

t+ 1

(
t∑

k=1

Vπ
∗
t+1

rk (s)−
t∑

k=1

Vπ∗trk (s)

)
= (1− 1

t+ 1
)Vπ

∗
t

r̂t
(s) +

1

t+ 1
Vπ
∗
t+1

rt+1 (s) +
t

t+ 1

(
Vπ
∗
t+1

r̂t
(s)− Vπ

∗
t

r̂t
(s)
)

≤ (1− 1

t+ 1
)Vπ

∗
t

r̂t
(s) +

1

t+ 1
Vπ
∗
t+1

rt+1 (s),

where the last inequality can be obtained by the fact that π∗t is the optimal policy
satisfies

Vπ
∗
t

r̂t
(s) ≥ Vπ

∗
t+1

r̂t
(s),∀s ∈ S.
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On the other hand, we can derive the lower bound as

Vπ
∗
t+1

r̂t+1
(s) = Vπ

∗
t

r̂t
(s) +

1

t+ 1

(
t+1∑
k=1

Vπ
∗
t+1

rk (s)− t+ 1

t

t∑
k=1

Vπ∗trk (s)

)

= Vπ
∗
t

r̂t
(s) +

1

t+ 1

(
t+1∑
k=1

Vπ
∗
t+1

rk (s)− t+ 1

t

t+1∑
k=1

Vπ∗trk (s)

)
+

1

t
Vπ∗trt+1

(s)

= Vπ
∗
t

r̂t
(s) +

1

t+ 1

(
t+1∑
k=1

Vπ
∗
t+1

rk (s)−
t+1∑
k=1

Vπ∗trk (s)

)

− 1

t(t+ 1)

t+1∑
k=1

Vπ∗trk (s) +
1

t
Vπ∗trt+1

(s)

= Vπ
∗
t

r̂t
(s) + (Vπ

∗
t+1

r̂t+1
(s)− Vπ

∗
t

r̂t+1
(s))− 1

t+ 1
Vπ
∗
t

r̂t
(s) +

1

t+ 1
Vπ∗trt+1

(s)

≥ (1− 1

t+ 1
)Vπ

∗
t

r̂t
(s) +

1

t+ 1
Vπ∗trt+1

(s),

where the last inequality comes from the fact π∗t+1 is the optimal policy satisfies

Vπ
∗
t+1

r̂t+1
(s) ≥ Vπ

∗
t

r̂t+1
(s), ∀s ∈ S.

Then, we can obtain the following result

|Vπ
∗
t+1

r̂t+1
(s)− Vt+1(s)| ≤ (1− 1

t+ 1
)|Vπ

∗
t

r̂t
(s)− Vt(s)|+ 1

t+ 1
∆t+1. (4.7)

In above inequality, ∆t+1 = max{|Vπ
∗
t+1

rt+1 (s)− V πt+1
rt+1

(s)|, |Vπ
∗
t

rt+1(s)− V πt+1
rt+1

(s)|},
which satisfies

∆t+1 ≤Cπ max{‖π∗t+1 − πt+1‖1, ‖π∗t − πt+1‖1}

≤Cπ(‖π∗t − πt+1‖1 + ‖π∗t − π∗t+1‖1)

≤Cv‖V
π∗t
r̂t
− Vt‖∞ +

(4τ + 2)Cv
t+ 1

.

The first term of the last inequality can be obtain by settingCv = ξCπ. The second
part follows by the upper bound and the lower bound of Vπ

∗
t+1

r̂t
. Next we show the

bound of ‖Vπ
∗
t

r̂t
− Vt‖∞ by recurring Equ.(4.7)

‖Vπ
∗
t

r̂t
− Vt‖∞ ≤

(4τ + 2)Cv
t2

+
t−1∑
k=1

(4τ + 2)Cv
k2

t∏
m=k+1

(
1− 1− Cv

m

)
.
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Let us take the logarithm of
∏t

m=k+1

(
1− 1−Cv

m

)
, there is

ln
t∏

m=k+1

(
1− 1− Cv

m

)

=
t∑

m=k+1

(ln (m− 1 + Cv)− lnm)

≤
t∑

m=k+1

−1 + Cv
m

≤ −(1− Cv)
∫ t+1

k+1

1

m
dm = −(1− Cv) ln

t+ 1

k + 1
,

where the first inequality holds since the logarithm function is concave. Thus we
derive the bound as

‖Vπ
∗
t

r̂t
− Vt‖∞ ≤(4τ + 2)Cv

t∑
k=1

1

k2

(k + 1)1−Cv

(t+ 1)1−Cv

≤ (4τ + 2)Cv
(t+ 1)1−Cv

t∑
k=1

1

k2

(
k1−Cv + (1− Cv)k−Cv

)
≤ (4τ + 2)Cv

(t+ 1)1−Cv

[
2− Cv +

∫ t

1

k−Cv−1dk + (1− Cv)
∫ t

1

k−Cv−2dk

]
=

(4τ + 2)Cv
(t+ 1)1−Cv

[
2− Cv +

1

Cv
− t−Cv

Cv
+

1− Cv
1 + Cv

− 1− Cv
1 + Cv

t−Cv−1

]
≤CCv(t+ 1)Cv−1,

where C = 6τ(2 − Cv + 1
Cv

+ 1−Cv
1+Cv

). In above results, the second inequality
follows by Taylor’s theorem.

4.6.5 Proof of Proposition 4.7

Let us define the operator

T πVπr (s) = Eπ

[
r(s,a)− ρr(π) +

∑
s′∈S

p(s′|s,a)Vπr (s′)

]
.
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Then we can obtain

Vπ1r (s)− Vπ2r (s)

= T π1Vπ1r (s)− T π2Vπ2r (s)

= (T π1Vπ1r (s)− T π2Vπ1r (s)) + (T π2Vπ1r (s)− T π2Vπ2r (s)) .

By the definition of the operator, we rewrite the first term as

T π1Vπ1r (s)− T π2Vπ1r (s)

= Eπ1

[
r(s,a)− ρr(π1) +

∑
s′∈S

p(s′|s,a)Vπ1r (s′)

]

− Eπ2

[
r(s,a)− ρr(π2) +

∑
s′∈S

p(s′|s,a)Vπ1r (s′)

]
= (Eπ1 [Qπ1

r (s,a)]− Eπ2 [Qπ1
r (s,a)]) + (ρr(π2)− ρr(π1))

= (Qπ1
r (s, π1)−Qπ1

r (s, π2)) + Es∼dπ2 (s)[Q
π1
r (s, π2)−Qπ1

r (s, π1)].

The second term can be expressed as

T π2Vπ1r (s)− T π2Vπ2r (s)

= Eπ2

[
r(s,a)− ρr(π2) +

∑
s′∈S

p(s′|s,a)Vπ1r (s′)− r(s,a)

+ρr(π2)−
∑
s′∈S

p(s′|s,a)Vπ2r (s)

]
= Es′∼pπ2 (s′|s)[Vπ1r (s′)− Vπ2r (s′)].

By summing up the above results, we obtain

Vπ1r (s)− Vπ2r (s)

= (Qπ1
r (s, π1)−Qπ1

r (s, π2)) + Es∼dπ2 (s)[Q
π1
r (s, π2)−Qπ1

r (s, π1)]

+ Es′∼pπ2 (s′|s)[Vπ1r (s′)− Vπ2r (s′)].

In matrix notation, there is

Vπ1r − Vπ2r = (Qπ1,π1
r −Qπ1,π2

r )− e|S|d>π2(Q
π1,π1
r −Qπ1,π2

r ) + P π2(Vπ1r − Vπ2r ),



104 Chapter 4. Online MDPs with Policy Iteration

where Vπr and Qπ,π′
r are the length |S| vectors whose sth element is Vπr (s) and

Qπ
r (s, π′), respectively. e|S| denotes the length |S| vector with all elements equal

to 1. dπ is the |S|-dimensional vector whose sth element is dπ(s). P π is defined as
the transition matrix induced by the policy π and the transition p(s′|s,a). Thus,
we obtain

(I|S| − P π2)(Vπ1r − Vπ2r ) = (I|S| − e|S|d>π2)(Q
π1,π1
r −Qπ1,π2

r ).

It is known that the Bellman equation with average reward function has no unique
solution. However, the unique value function satisfies d>π Vπr = 0. Hence, we add
this condition to the above equation as

(I|S| − P π2)(Vπ1r − Vπ2r )

= (I|S| − e|S|d>π2)(Q
π1,π1
r −Qπ1,π2

r )− e|S|d>π1V
π1
r + e|S|d

>
π2
Vπ2r

= (I|S| − e|S|d>π2)(Q
π1,π1
r −Qπ1,π2

r )− e|S|d>π2(V
π1
r − Vπ2r )

− (e|S|d
>
π1
− e|S|d>π2)V

π1
r

Then, by rearranging the above result:

(I|S| − P π2 + e|S|d
>
π2

)(Vπ1r − Vπ2r ) = (Qπ1,π1
r −Qπ1,π2

r )− (P π1
sa − P π2

sa )Qπ1
r ,

where P π
sa is the |S| × |A| matrix whose (s,a)th element is dπ(s)π(a|s). Using

Proposition 12 in Ma et al. (2014), we obtain

‖Vπ1r − Vπ2r ‖∞ ≤
2− 2e−1/τ

1− e−1/τ
‖(I|S| − P π2 + e|S|d

>
π2

)−1Qπ1
r ‖∞‖π1 − π2‖1,

which concludes the proof by setting

max
π∈Π

2− 2e−1/τ

1− e−1/τ
‖(I|S| − P π + e|S|d

>
π )−1Qπ

r ‖∞ ≤ Cπ.

4.7 Summary

As a generalization of MDP, online MDP is a promising model which can handle
many online problem with guaranteed performance. In this chapter, we proposed
a policy iteration algorithm with a closed form update rule for online MDP prob-
lems. We showed that the proposed algorithm achieves sublinear regret for a
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policy set. A notable fact is that the proposed algorithm is still practical for online
MDP problems with large (continuous) state space. We showed that the propose
algorithm can be easily combined with function approximation with theoretical
guarantee. We illustrated the performance of the proposed algorithm through grid-
world experiments.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Online decision making in non-stationary Markovian environments has a promis-
ing prospect of application from robotics to finance. By formulating the problem
as an online MDP, a growing number of researches proposed online MDP algo-
rithms and analyzed their online performance with theoretical guarantees. Particu-
larly, online MDP problems with large (continuous) state space arise naturally. In
this thesis, we proposed two new algorithms for dealing with such problems. As
shown in Figure 1.3, the proposed algorithms handle the continuous online MDP
problem by parameterizing the policy space and the value function, respectively.

In Chapter 3, we proposed the online policy gradient algorithm for continuous
state and action spaces online MDP problems. The proposed algorithm utilizes the
parameterized policy model which is natural for handling continuous state and
action spaces. Through regret analysis, we showed that the proposed algorithm
achieves a sublinear regret, which means our algorithm performs asymptotically
equal to the best fixed policy. More precisely, the proposed algorithm achieves
O(
√
T ) and O(log T ) regrets with full information feedback under concavity and

strong concavity assumptions, respectively. Furthermore, the proposed algorithm
achieves O(

√
T ) with bandit feedback under a concavity assumption. We also

demonstrated the performance of our algorithm with two toy experiments, which
verifies that our algorithm improves the performance for continuous tasks.

In Chapter 4, we proposed the online MDPs with policy iteration algorithm for

107



108 Chapter 5. Conclusions and Future Work

large (infinite) state space online MDP problems, which achieves less computation
complexity in exchange for large regret. The proposed algorithm is motivated by
the idea of combining the function approximation with policy iteration. Through
regret analysis, we proved that the proposed method achieve a sublinear regret
with full information feedback. We also analyzed the computation complexity
is O(|S|2.3728639 + |S|2|A|), which is computational more efficient than related
works. Then we presented a linear approximator with a convergence guarantee,
which can be used together with the OMDP-PI algorithm. Moreover, an extension
of the OMDP-PI algorithm called OMDP-SI algorithm is presented. We showed
that the OMDP-SI algorithm could achieve a sublinear regret as well under some
specific additional assumptions. Finally, we illustrated the experimental perfor-
mance to show the usefulness of the OMDP-PI algorithm.

5.2 Future Work

In this section, we show some challenging directions that we will work on in the
future.

5.2.1 Non-stationary Transition Dynamics

In an online MDP, the environment consists of two components: the reward func-
tion and transition dynamics. In this thesis, we assumed the reward function
changes over time and transition dynamics are fixed and known to the decision
maker. However, this is not the best we can do with changing environments. A
more challenging problem is that the decision maker faces two kinds of uncertain-
ties of the environment: the changing reward function and the changing transition
probability (density).

A related work to handle this uncertainty is robust optimization. Plenty of al-
gorithms have been proposed to handle robust Markov decision processes, where
the reward function and the transition dynamics are allowed to change in a certain
range. These algorithms usually assumes that the uncertainty has a fixed unknown
realization and construct a policy that performs well in the worst case (Yu et al.,
2009). In other words, the robust optimization gives a policy which performs rea-
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sonably well within the set of all the reward functions and transition probabilities
as

π+ = argmaxπ min
(r,p)∈U

Eπ

[
T∑
t=1

r(st,at)|p

]
,

where U is the set of all the reward functions and transition probabilities pairs.

The robust optimization cannot face the arbitrary changing environment as we
considered in online MDPs. Yu and Mannor (2009) proposed an algorithm that
combines the online MDP and the robust optimization by assuming the transition
dynamics are not changing abruptly. Nevertheless, this assumption does not al-
ways hold in reality. It is challenging and important to find a good way to solve
the changing transition dynamics problem without additional assumptions.

5.2.2 Contextual Online MDPs

Recently, Abbasi-Yadkori and Neu (2014) considered online Markov decision
process problems when the side information are available. This problem is moti-
vated by real applications where the environments are usually not arbitrary chang-
ing over time. The recommendation system we introduced in Section 1.3 is a
typical example of online MDP problem with side information. Consider the rec-
ommendation system decides the recommendations which should be provided to
the customers depending on the users’ profiles. Every user could be specified by
the user’s private information, which can be treated as the side information. The
contextual online MDP problem is similar to the contextual bandit problem. The
environment change is neither stochastic nor adversary, where the reward function
and the transition dynamic are allowed to depend on the side information.

Abbasi-Yadkori and Neu (2014) defined that the reward function and the tran-
sition probability are both the generalized linear model with respect to the side
information vector. The idea is to maintain confidence sets for the parameters of
the generalized linear models, then choose the estimation and the policy which
maximizes the return.

However, this approach is applicable only to the generalized linear model.
Therefore, it is a promising direction to investigate a more general way to solve
contextual online MDP problems.
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5.2.3 Beyond the Regret

Till now, we used the notion of the regret for evaluating the performance of online
MDP algorithms. However, the regret is not the only way to evaluate the online
performance. Beyond the regret, other performance measure (e.g., Φ-regret, inter-
nal regret) can be stronger than the regret. Consider the baseline of comparison, a
more challenging baseline is possible to be proposed for the definition of the re-
gret. Yu et al. (2009) considered the regret with respect to dynamic policies over
T time steps as

L̃A(T ) = sup
{π1,...,πT }

E{π1,...,πT }

[
T∑
t=1

rt(st,at)

]
−RA(T ),

where the switching times of the policy sequence {π1,...,πT } are bounded by some
positive constant. With addition assumptions, it has been shown that the above
definition of the regret can be sublinear in online MDP problems.

Therefore, we would like to investigate a stronger regret bound for our pro-
posed algorithm in future works.
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